Necessary conditions for the extendibility of a first-order flex of a polyhedron to its flex

We derive fundamentally new equations that are satisfied by first-order flexes of a flexible polyhedron. Moreover, we indicate two sources of such new equations. These sources are the Dehn invariants and rigidity matrix. The equations derived provide us with fundamentally new necessary conditions for the extendibility of a first-order flex of a polyhedron to its flex.

[1]  V. Alexandrov Algebra versus analysis in the theory of flexible polyhedra , 2009, 0902.0186.

[2]  I. K. Sabitov Algebraic methods for solution of polyhedra , 2011 .

[3]  Hellmuth Stachel HIGHER ORDER FLEXIBILITY OF OCTAHEDRA , 2000 .

[4]  Jörg M. Wills,et al.  Handbook of Convex Geometry , 1993 .

[5]  I. Kh. Sabitov,et al.  Bending of surfaces. Part II , 1995 .

[6]  R. Connelly,et al.  The Bellows conjecture. , 1997 .

[7]  H. Gluck Almost all simply connected closed surfaces are rigid , 1975 .

[8]  A. Gaifullin,et al.  Dehn Invariant and Scissors Congruence of Flexible Polyhedra , 2018, Proceedings of the Steklov Institute of Mathematics.

[9]  Иджад Хакович Сабитов,et al.  Обобщенная формула Герона - Тарталья и некоторые ее следствия@@@A generalized Heron - Tartaglia formula and some of its consequences , 1998 .

[10]  A. Gaifullin Sabitov polynomials for volumes of polyhedra in four dimensions , 2011, 1108.6014.

[11]  Robert Connelly,et al.  Second-Order Rigidity and Prestress Stability for Tensegrity Frameworks , 1996, SIAM J. Discret. Math..

[12]  R. Bricard Mémoire sur la théorie de l'octaèdre articulé , 1897 .

[13]  A. Gaifullin Flexible Polyhedra and Their Volumes , 2016, 1605.09316.

[14]  Alexander A. Gaifullin Generalization of Sabitov’s Theorem to Polyhedra of Arbitrary Dimensions , 2014, Discret. Comput. Geom..

[15]  N. H. Kuiper Sphères Polyédriques Flexibles dans E3, d’après Robert Connelly , 1979 .

[16]  R. Connelly CHAPTER 1.7 – Rigidity , 1993 .

[17]  Robert Connelly,et al.  A counterexample to the rigidity conjecture for polyhedra , 1977 .

[18]  Idzhad Kh. Sabitov,et al.  The Volume as a Metric Invariant of Polyhedra , 1998, Discret. Comput. Geom..

[19]  V. Alexandrov A sufficient condition for a polyhedron to be rigid , 2018, Journal of Geometry.

[20]  I. Ivanova-Karatopraklieva,et al.  Bending of surfaces. III , 2008 .

[21]  R. Alexander Lipschitzian mappings and total mean curvature of polyhedral surfaces. I , 1985 .

[22]  N. H. Kuiper Sphères polyédriques flexibles dans $E^3$ , 1978 .

[23]  I. Kh. Sabitov,et al.  A generalized Heron-Tartaglia formula and some of its consequences , 1998 .