Construction Procedures for t-designs and the Existence of New Simple 6–designs

We describe procedures for finding t-designs with prescribed automorphism groups and apply these methods to finding t-designs on 20 points with either PGL2(19) or PSL2(19) as an automorphism group. We produce two non-isomorphic simple 6-designs with parameters 6-(20,9,112) and automorphism group PSL2(19). It has been previously shown that if q < 19, simple 6-designs on v = q + 1 points do not exist with automorphism group PSL2(q). Hence v = 20 is the smallest v = q +1 where simple 6-designs occur with automorphism group PSL2(q).

[1]  Andries E. Brouwer,et al.  A new 5-design , 1977 .

[2]  Ronald C. Mullin,et al.  Uniqueness theorems in balanced incomplete block designs , 1969 .

[3]  Xavier L. Hubaut Two new families of 4-designs , 1974, Discret. Math..

[4]  D. R. Hughes,et al.  On t-Designs and Groups , 1965 .

[5]  Haim Hanani,et al.  On Quadruple Systems , 1960, Canadian Journal of Mathematics.

[6]  Dale M. Mesner,et al.  T-designs on Hypergraphs , 1976, Discret. Math..

[7]  W. O. Alltop,et al.  An infinite class of 4-designs , 1969 .

[8]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs I. Composition Theorems and Morphisms , 1972, J. Comb. Theory, Ser. A.

[9]  Richard N Lane t-Designs and t-ply homogeneous groups , 1971 .

[10]  Richard M. Wilson,et al.  On $t$-designs , 1975 .

[11]  E. Witt über Steinersche Systeme , 1937 .

[12]  R. G. Stanton,et al.  Block Intersections in Balanced Incomplete Block Designs , 1964, Canadian Mathematical Bulletin.

[13]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs, III: Proof of the Existence Conjectures , 1975, J. Comb. Theory, Ser. A.

[14]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures , 1972, J. Comb. Theory, Ser. A.

[15]  Vera Pless The Weight of the Symmetry Code for p=29 and the 5‐Designs Contained Therein , 1970 .

[16]  Vera Pless,et al.  On a new family of symmetry codes and related new five-designs , 1969 .

[17]  Richard M. Wilson,et al.  Cyclotomy and difference families in elementary abelian groups , 1972 .

[18]  William O. Alltop,et al.  An Infinite Class of 5-Designs , 1972, J. Comb. Theory, Ser. A.

[19]  Vera Pless,et al.  Symmetry Codes over GF(3) and New Five-Designs , 1972, J. Comb. Theory A.

[20]  Spyros S. Magliveras,et al.  t-Designs from the large Mathieu groups , 1981 .

[21]  Heinz Lüneburg,et al.  Transitive Erweiterungen endlicher Permutationsgruppen , 1969 .

[22]  William M. Kantor,et al.  4-Homogeneous groups , 1968 .

[23]  H. Mattson,et al.  New 5-designs , 1969 .

[24]  Benedict H. Gross,et al.  Intersection triangles and block intersection numbers of Steiner systems , 1974 .

[25]  R. H. F. Denniston,et al.  Some New 5-Designs , 1976 .

[26]  Ascher Wagner,et al.  Transitivity of finite permutation groups on unordered sets , 1965 .

[27]  Sanpei Kageyama,et al.  THE FAMILY OF t-DESIGNS* - PART II , 1980 .