Multiple strategies for O2 transport: from simplicity to complexity

O2carriers (extracellular and intracellular as well as monomeric and multimeric) have evolved over the last billion of years, displaying iron and copper reactive centers; very different O2carriers may co‐exist in the same organism. Circulating O2carriers, faced to the external environment, are responsible for maintaining an adequate delivery of O2to tissues and organs almost independently of the environmental O2partial pressure. Then, intracellular globins facilitate O2transfer to mitochondria sustaining cellular respiration. Here, molecular aspects of multiple strategies evolved for O2transport and delivery are examined, from the simplest myoglobin to the most complex giant O2carriers and the red blood cell, mostly focusing on the aspects which have been mainly addressed by the so called 'Rome Group'.

[1]  M. Brunori,et al.  Aplysia limacina myoglobin cDNA cloning: an alternative mechanism of oxygen stabilization as studied by active-site mutagenesis. , 1996, The Biochemical journal.

[2]  P. Ascenzi,et al.  Kinetic evidence for the existence of a rate-limiting step in the reaction of ferric hemoproteins with anionic ligands. , 1996, European journal of biochemistry.

[3]  M. Brunori,et al.  The structure of murine neuroglobin: Novel pathways for ligand migration and binding , 2004, Proteins.

[4]  M. Bolognesi,et al.  Formate binding to ferric wild type and mutant myoglobins thermodynamic and X‐ray crystallographic study , 1995, FEBS letters.

[5]  Luis Serrano,et al.  The folding transition state between SH3 domains is conformationally restricted and evolutionarily conserved , 1999, Nature Structural Biology.

[6]  M. Perutz,et al.  Molecular Pathology of Human Haemoglobin: Stereochemical Interpretation of Abnormal Oxygen Affinities , 1971, Nature.

[7]  M. Perutz,et al.  Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. , 1960, Nature.

[8]  M. Brunori,et al.  Enzyme Proteins. (Book Reviews: Hemoglobin and Myoglobin in Their Reactions with Ligands) , 1971 .

[9]  M. Nardini,et al.  Reversible hexa‐ to penta‐coordination of the heme Fe atom modulates ligand binding properties of neuroglobin and cytoglobin , 2004, IUBMB life.

[10]  M. Brunori,et al.  Kinetics of the Bohr effect in the reaction of Helix pomatia beta-hemocyanin with oxygen. , 1978, Biochemical and Biophysical Research Communications - BBRC.

[11]  Andrea Bellelli,et al.  Probing the α1β2 Interface of Human Hemoglobin by Mutagenesis , 1996, The Journal of Biological Chemistry.

[12]  R. Hochstrasser,et al.  Fluorescence and energy transfer of tryptophans in Aplysia myoglobin. , 1987, Biophysical journal.

[13]  Massimo Coletta,et al.  Kinetics of sickle haemoglobin polymerization in single red cells , 1982, Nature.

[14]  M. Brunori,et al.  Reaction of carbon monoxide with hemocyanin: stereochemical effects of a non-bridging ligand. , 1981, Journal of molecular biology.

[15]  A Colosimo,et al.  Concerted changes in an allosteric macromolecule. , 1974, Biophysical chemistry.

[16]  A. Miele,et al.  Complex landscape of protein structural dynamics unveiled by nanosecond Laue crystallography , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[17]  T. Yonetani,et al.  PH dependence of the Adair constants of human hemoglobin. Nonuniform contribution of successive oxygen bindings to the alkaline Bohr effect. , 1975, The Journal of biological chemistry.

[18]  Bart Hazes,et al.  Crystallographic analysis of oxygenated and deoxygenated states of arthropod hemocyanin shows unusual differences , 1994, Proteins.

[19]  M. Brunori,et al.  Thermodynamics of oxygen binding to trout haemoglobin I and its oxidation intermediates. , 1982, Journal of molecular biology.

[20]  J. Wyman,et al.  Linkage graphs: a study in the thermodynamics of macromolecules , 1984, Quarterly Reviews of Biophysics.

[21]  Alessandra Pesce,et al.  The Redox State of the Cell Regulates the Ligand Binding Affinity of Human Neuroglobin and Cytoglobin* , 2003, Journal of Biological Chemistry.

[22]  A. Miele,et al.  Control of heme reactivity by diffusion: structural basis and functional characterization in hemoglobin mutants. , 2001, Biochemistry.

[23]  A. Miele,et al.  The allosteric properties of hemoglobin: insights from natural and site directed mutants. , 2006, Current protein & peptide science.

[24]  I. Schlichting,et al.  Crystal structure of photolysed carbonmonoxy-myoglobin , 1994, Nature.

[25]  M. Brunori,et al.  Mini-myoglobin. Electron paramagnetic resonance and reversible oxygenation of the cobalt derivative. , 1991, Journal of Molecular Biology.

[26]  M. Brunori,et al.  A cooperative model for ligand binding to biological macromolecules as applied to oxygen carriers. , 1986, Biophysical chemistry.

[27]  M Brunori,et al.  Mini-myoglobin: preparation and reaction with oxygen and carbon monoxide. , 1986, Journal of molecular biology.

[28]  J J Hopfield,et al.  Relation between structure, co-operativity and spectra in a model of hemoglobin action. , 1973, Journal of molecular biology.

[29]  J. Tame,et al.  The crystal structures of trout Hb I in the deoxy and carbonmonoxy forms. , 1996, Journal of molecular biology.

[30]  M. Brunori,et al.  Kinetic control of ligand binding processes in hemoproteins , 1989 .

[31]  M. Nardini,et al.  Structure‐Function Relationships in the Growing Hexa‐Coordinate Hemoglobin Sub‐Family , 2004, IUBMB life.

[32]  W. Gilbert Why genes in pieces? , 1978, Nature.

[33]  E. Antonini,et al.  Studies on chlorocruorin. I. The oxygen equilibrium of Spirographis chlorocruorin. , 1962, Archives of biochemistry and biophysics.

[34]  M. Perutz,et al.  Structure of Hæmoglobin: A Three-Dimensional Fourier Synthesis at 5.5-Å. Resolution, Obtained by X-Ray Analysis , 1960, Nature.

[35]  K. Imai,et al.  Thermodynamic aspects of the co-operativity in four-step oxygenation equilibria of haemoglobin. , 1979, Journal of molecular biology.

[36]  M. Brunori,et al.  Folding of Aplysia limacina apomyoglobin involves an intermediate in common with other evolutionarily distant globins. , 2004, Biochemistry.

[37]  Alessandra Pesce,et al.  Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity. , 2003, Structure.

[38]  M. Brunori,et al.  1H-NMR study of the effect of temperature through reversible unfolding on the heme pocket molecular structure and magnetic properties of aplysia limacina cyano-metmyoglobin. , 2005, Biophysical journal.

[39]  M. Brunori,et al.  Absence of water at the sixth co-ordination site in ferric Aplysia myoglobin. , 1981, Journal of molecular biology.

[40]  J. Wittenberg The molecular mechanism of hemoglobin-facilitated oxygen diffusion. , 1966, The Journal of biological chemistry.

[41]  M. Brunori,et al.  Ligand binding and slow structural changes in chlorocruorin from Spirographis spallanzanii. , 1993, Biochemistry.

[42]  P. Gualtieri,et al.  Kinetics of the reaction of intraerythrocytic haemoglobin by single cell microspectroscopy: effect of shape and osmolarity , 1985, FEBS letters.

[43]  M. Brunori,et al.  The role of cavities in protein dynamics: crystal structure of a photolytic intermediate of a mutant myoglobin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[44]  C. Blake,et al.  Do genes-in-pieces imply proteins-in-pieces? , 1978, Nature.

[45]  M. Brunori,et al.  A spectrophotometric method to determine the amount of CO bound to hemocyanin. , 1983, Analytical biochemistry.

[46]  M. Brunori,et al.  Mini-myoglobin. The structural significance of haem-ligand interactions. , 1988, Journal of molecular biology.

[47]  J. Wyman,et al.  Further studies on the oxygen equilibrium of hemoglobin. , 1950, The Journal of biological chemistry.

[48]  R. G. Hart,et al.  Structure of Myoglobin: A Three-Dimensional Fourier Synthesis at 2 Å. Resolution , 1960, Nature.

[49]  A. Jeffreys,et al.  The mouse myoglobin gene. Characterisation and sequence comparison with other mammalian myoglobin genes. , 1986, European journal of biochemistry.

[50]  K. Shikama,et al.  Structure-Function Relationships in Unusual Nonvertebrate Globins , 2004, Critical reviews in biochemistry and molecular biology.

[51]  D. Verma,et al.  Soybean leghemoglobin gene family: normal, pseudo, and truncated genes. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[52]  M. Brunori,et al.  A macromolecular transducer as illustrated by trout hemoglobin IV. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[53]  G. Adair THE HEMOGLOBIN SYSTEM VI. THE OXYGEN DISSOCIATION CURVE OF HEMOGLOBIN , 1925 .

[54]  K. Nagai,et al.  Distal residues in the oxygen binding site of haemoglobin studied by protein engineering , 1987, Nature.

[55]  L. Sieker,et al.  Structures of deoxy and oxy hemerythrin at 2.0 A resolution. , 1991, Journal of molecular biology.

[56]  M. Brunori,et al.  A new folding intermediate of apomyoglobin from Aplysia limacina: stepwise formation of a molten globule. , 2000, Journal of molecular biology.

[57]  M. Brunori,et al.  Unfolding of apomyoglobin from Aplysia limacina: the effect of salt and pH on the cooperativity of folding. , 1998, Journal of molecular biology.

[58]  M. Brunori,et al.  Structural factors governing azide and cyanide binding to mammalian metmyoglobins. , 1994, The Journal of biological chemistry.

[59]  M. Brunori,et al.  Interaction of lanthanide ions with Panulirus interruptus hemocyanin: evidence for vicinity of some of the cation binding sites. , 1981, Journal of molecular biology.

[60]  G. Sciara,et al.  Extended subnanosecond structural dynamics of myoglobin revealed by Laue crystallography. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[61]  M. Brunori,et al.  Protein dynamics in minimyoglobin: is the central core of myoglobin the conformational domain? , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Michele Vendruscolo,et al.  A PDZ domain recapitulates a unifying mechanism for protein folding , 2007, Proceedings of the National Academy of Sciences.

[63]  M. Brunori,et al.  Temperature perturbation of the allosteric equilibrium in trout hemoglobin. , 1980, The Journal of biological chemistry.

[64]  M. Brunori,et al.  Sexual and seasonal variability of lobster hemocyanin , 1988 .

[65]  E. Henry,et al.  Application of linear free energy relations to protein conformational changes: the quaternary structural change of hemoglobin. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[66]  M. Brunori,et al.  Carbon monoxide binding by simple heme proteins under photodissociating conditions. , 1973, Biochemistry.

[67]  J. Olson,et al.  The rate of oxygen uptake by human red blood cells. , 1979, The Journal of biological chemistry.

[68]  M. Brunori,et al.  Equilibrium and kinetic evidence for a transition between six- and five-coordinate ferrous heme in the nitric oxide derivative of Aplysia myoglobin. , 1981, The Journal of biological chemistry.

[69]  M. Brunori,et al.  Equilibrium and kinetics of the reaction of Aplysia myoglobin with azide. , 1975, Biochemistry.

[70]  M. Brunori,et al.  Control and recognition of anionic ligands in myoglobin , 1991, FEBS letters.

[71]  M. Doyle,et al.  Oxygen binding constants for human hemoglobin tetramers. , 1987, Biochemistry.

[72]  M. Brunori,et al.  Thermodynamics of ligand binding and allosteric transition in hemoglobins. Reaction of Hb trout IV with CO. , 1978, Journal of molecular biology.

[73]  L. Moens,et al.  The reactions of neuroglobin with CO: evidence for two forms of the ferrous protein. , 2006, Journal of inorganic biochemistry.

[74]  C. A. Sawicki,et al.  Properties of the T state of human oxyhemoglobin studies by laser photolysis. , 1977, The Journal of biological chemistry.

[75]  M. Brunori,et al.  Neuroglobin, nitric oxide, and oxygen: functional pathways and conformational changes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[76]  M. Brunori Kinetics of oxygen binding by octopus haemocyanin. , 1969, Journal of molecular biology.

[77]  Isao Morishima,et al.  Possible Neuroprotective Mechanism of Human Neuroglobin , 2005, Annals of the New York Academy of Sciences.

[78]  M. Perutz,et al.  Molecular pathology of human haemoglobin. , 1968, Nature.

[79]  M. Brunori,et al.  Binding mode of azide to ferric Aplysia limacina myoglobin. Crystallographic analysis at 1.9 Å resolution , 1991, Journal of molecular recognition : JMR.

[80]  M. Brunori,et al.  Root effect of Panulirus interruptus hemocyanin. , 1980, Biochimica et biophysica acta.

[81]  M. Brunori,et al.  Reactivity of ferric Aplysia myoglobin towards anionic ligands in the acidic region. Proposal for a structural model. , 1981, Journal of molecular biology.

[82]  M. Brunori,et al.  Kinetic and thermodynamic parameters for oxygen binding to the allosteric states of Panulirus interruptus hemocyanin. , 1983, Biophysical chemistry.

[83]  M. Brunori,et al.  Spectral changes and allosteric transition in trout haemoglobin , 1975, Nature.

[84]  M. Brunori,et al.  Structure of binding sites for heterotropic effectors in fish haemoglobins , 1981, Nature.

[85]  R. Grandori,et al.  Cloning, overexpression and characterization of micro-myoglobin, a minimal heme-binding fragment. , 2000, European journal of biochemistry.

[86]  A. Jeffreys,et al.  The seal myoglobin gene: an unusually long globin gene , 1983, Nature.

[87]  M. Brunori,et al.  Multiple linkage in Panulirus interruptus hemocyanin. , 1979, Biochemistry.

[88]  J. Markl,et al.  cDNA Sequence, Protein Structure, and Evolution of the Single Hemocyanin from Aplysia californica, an Opisthobranch Gastropod , 2004, Journal of Molecular Evolution.

[89]  M. Brunori,et al.  Kinetics of reversible protein denaturation. A study on aplysia myoglobin. , 1979, Biophysical chemistry.

[90]  M Brunori,et al.  Kinetics of carbon monoxide binding to monomeric hemoproteins. Role of the proximal histidine. , 1985, The Journal of biological chemistry.

[91]  M. Brunori,et al.  Denaturation of Aplysia myoglobin. Equilibrium study. , 1972, Journal of molecular biology.

[92]  M Brunori,et al.  Reactivity of ferrous myoglobin at low pH. , 1977, The Journal of biological chemistry.

[93]  P. A. Benedetti,et al.  Fast scanning microspectroscopy: an electrodynamic moving-condenser method. , 1976, Applied optics.

[94]  M Bolognesi,et al.  Cyanide binding to Lucina pectinata hemoglobin I and to sperm whale myoglobin: an x-ray crystallographic study. , 1999, Biophysical journal.

[95]  J Wyman,et al.  The turning wheel: a study in steady states. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[96]  M. Brunori,et al.  Cooperative free energies for nested allosteric models as applied to human hemoglobin. , 1986, Biophysical Journal.

[97]  B. Vallone,et al.  DEOXYHEMOGLOBIN T38W (ALPHA CHAINS), V1G (ALPHA AND BETA CHAINS) , 1996 .

[98]  M. Brunori,et al.  A globin for the brain , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[99]  J. Wyman,et al.  LINKED FUNCTIONS AND RECIPROCAL EFFECTS IN HEMOGLOBIN: A SECOND LOOK. , 1964, Advances in protein chemistry.

[100]  J. Wyman,et al.  Regulation in macromolecules as illustrated by haemoglobin , 1968, Quarterly Reviews of Biophysics.

[101]  M. Brunori,et al.  Stereochemistry of cooperative effects in fish and amphibian haemoglobins , 1982, Nature.

[102]  J. V. Bannister,et al.  Oxygen-transport proteins , 1979 .

[103]  E. Ball,et al.  METABOLIC STUDIES ON THE GAS GLAND OF THE SWIM BLADDER , 1955 .

[104]  M. Brunori,et al.  Folding of apominimyoglobin. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[105]  M Brunori,et al.  Dynamics of the quaternary conformational change in trout hemoglobin. , 1991, Biochemistry.

[106]  M. Brunori Kinetics of the reaction of Octopus vulgaris hemocyanin with oxygen. , 1971, Journal of molecular biology.

[107]  H. Jane Dyson,et al.  Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding , 1998, Nature Structural Biology.

[108]  A Merli,et al.  Reactivity of ferric Aplysia and sperm whale myoglobins towards imidazole. X-ray and binding study. , 1982, Journal of molecular biology.

[109]  M. Brunori,et al.  Carbon monoxide binding by hemoglobin and myoglobin under photodissociating conditions. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[110]  R. Lewin Myoglobin gene is a big surprise. The first analysis of a myoglobin gene reveals some striking similarities and some unexpected differences from hemoglobin genes. , 1983, Science.

[111]  M. Perutz Stereochemistry of cooperative effects in haemoglobin. , 1970, Nature.

[112]  A. Jeffreys,et al.  Organization of the human myoglobin gene. , 1984, The EMBO journal.

[113]  G G Dodson,et al.  Human deoxyhaemoglobin-2,3-diphosphoglycerate complex low-salt structure at 2.5 A resolution. , 1993, Journal of molecular biology.

[114]  M. Brunori,et al.  Effect of light on carbon monoxide binding by erythrocruorin. , 1975, Journal of molecular biology.

[115]  M. Brunori,et al.  Kinetic studies of ligand binding to hemoglobin and its isolated subunits by the temperature jump relaxation method. , 1969, The Journal of biological chemistry.

[116]  Q H Gibson,et al.  Quaternary conformational changes in human hemoglobin studied by laser photolysis of carboxyhemoglobin. , 1976, The Journal of biological chemistry.

[117]  J. Changeux,et al.  ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.

[118]  M. Brunori,et al.  The amino acid sequence of myoglobin from the mollusc Aplysia limacina. , 2009, International journal of peptide and protein research.

[119]  M. Brunori,et al.  Kinetic control of co-operativity in the oxygen binding of Panulirus interruptus hemocyanin. , 1977, Journal of molecular biology.

[120]  C Chothia,et al.  Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism. , 1979, Journal of molecular biology.

[121]  T. L. Hill,et al.  Cooperativity Theory in Biochemistry , 1985, Springer Series in Molecular and Cell Biology.

[122]  P E Wright,et al.  Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. , 1993, Science.

[123]  William A. Eaton,et al.  The relationship between coding sequences and function in haemoglobin , 1980, Nature.

[124]  M. Brunori,et al.  Studies on the properties of fish hemoglobins. Molecular properties and interaction with third components of the isolated hemoglobins from trout (Salmo irideus). , 1973, European journal of biochemistry.

[125]  G. Ilgenfritz,et al.  Kinetics of oxygen binding to human hemoglobin. Temperature jump relaxation studies. , 1974, Journal of Biological Chemistry.

[126]  M. Perutz Myoglobin and haemoglobin: role of distal residues in reactions with haem ligands. , 1989, Trends in biochemical sciences.

[127]  M. Brunori,et al.  X-ray crystal structure of ferric Aplysia limacina myoglobin in different liganded states. , 1993, Journal of molecular biology.

[128]  M. Brunori,et al.  Axial coordination of ferric Aplysia myoglobin. , 1989, The Journal of biological chemistry.

[129]  M. Brunori,et al.  Kinetic evidence for a role of heme geometry on the modulation of carbon monoxide reactivity in human hemoglobin. , 1988, The Journal of biological chemistry.

[130]  E. Di Cera,et al.  Allosteric interpretation of the oxygen-binding reaction of human hemoglobin tetramers. , 1987, Biochemistry.

[131]  M. Brunori,et al.  Ligand binding and stereochemical effects in hemocyanins , 1982, The EMBO journal.

[132]  M. Perutz,et al.  Oxygen binding properties of human mutant hemoglobins synthesized in Escherichia coli. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[133]  M. Bolognesi,et al.  Nonvertebrate hemoglobins: structural bases for reactivity. , 1997, Progress in biophysics and molecular biology.

[134]  D Bourgeois,et al.  The structural dynamics of myoglobin. , 2004, Journal of structural biology.

[135]  G. K. Ackers,et al.  Experimental resolution of cooperative free energies for the ten ligation states of human hemoglobin. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[136]  M. Go Correlation of DNA exonic regions with protein structural units in haemoglobin , 1981, Nature.

[137]  M. Perutz,et al.  Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron. , 1979, Annual review of biochemistry.

[138]  M. Brunori,et al.  Mini-myoglobin: native-like folding of the NO-derivative. , 1994, Biochimica et biophysica acta.

[139]  M. Brunori,et al.  Molecular adaptation to physiological requirements: the hemoglobin system of trout. , 1975, Current topics in cellular regulation.

[140]  M. Brunori,et al.  Single cell microspectroscopy reveals that erythrocytes containing hemoglobin S retain a ‘memory’ of previous sickling cycles , 1988, FEBS letters.

[141]  T. Burmester,et al.  Neuroglobin: a respiratory protein of the nervous system. , 2004, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[142]  A Coda,et al.  Aplysia limacina myoglobin. Crystallographic analysis at 1.6 A resolution. , 1989, Journal of molecular biology.

[143]  O. H. Kapp,et al.  Hierarchy of globin complexes. The quaternary structure of the extracellular chlorocruorin of Eudistylia vancouverii. , 1991, Journal of molecular biology.

[144]  A R Panchenko,et al.  Foldons, protein structural modules, and exons. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[145]  Aleksandr V. Smirnov,et al.  Watching a Protein as it Functions with 150-ps Time-Resolved X-ray Crystallography , 2003, Science.

[146]  J. Wyman,et al.  THE BINDING POTENTIAL, A NEGLECTED LINKAGE CONCEPT. , 1965, Journal of molecular biology.

[147]  M. Brunori,et al.  The structure of carbonmonoxy neuroglobin reveals a heme-sliding mechanism for control of ligand affinity. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[148]  T. Takano Refinement of Myoglobin and Cytochrome C , 1989 .

[149]  Q. Gibson,et al.  Mapping the Pathways for O2 Entry Into and Exit from Myoglobin* , 2001, The Journal of Biological Chemistry.

[150]  M. Brunori,et al.  Oxygen carrier proteins , 1985 .

[151]  M. Doyle,et al.  Alkaline Bohr effect of human hemoglobin Ao. , 1988, Journal of molecular biology.

[152]  M. Brunori,et al.  Heterogeneous binding of oxygen and carbon monoxide to dissociated molluscan hemocyanin. , 1985, Biophysical chemistry.

[153]  M. Brunori,et al.  The balance sheet of a hemoglobin. Thermodynamics of CO binding by hemoglobin trout I. , 1977, Journal of molecular biology.

[154]  M. Brunori,et al.  A common folding mechanism in the cytochrome c family. , 2004, Trends in biochemical sciences.

[155]  M. Brunori,et al.  Studies on the functional properties of fish hemoglobins. II. The oxygen equilibrium of the isolated hemoglobin components from trout blood. , 1971, Archives of biochemistry and biophysics.

[156]  J. Wyman,et al.  Nesting: hierarchies of allosteric interactions. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[157]  Alessandra Pesce,et al.  Neuroglobin and cytoglobin , 2002, EMBO reports.

[158]  M Paoli,et al.  The stereochemical mechanism of the cooperative effects in hemoglobin revisited. , 1998, Annual review of biophysics and biomolecular structure.

[159]  P. Ascenzi,et al.  Proton-linked Subunit Kinetic Heterogeneity for Carbon Monoxide Binding to Hemoglobin from Chelidonichthys kumu* , 1996, The Journal of Biological Chemistry.

[160]  M. Brunori,et al.  Site‐directed mutagenesis in hemoglobin , 1993, FEBS letters.

[161]  A. Miele,et al.  Modulation of ligand binding in engineered human hemoglobin distal pocket. , 1999, Journal of molecular biology.

[162]  M. Brunori,et al.  Reversible thermal denaturation of Aplysia myoglobin. , 1968, Journal of molecular biology.