Predicting Salient Updates for Disaster Summarization

During crises such as natural disasters or other human tragedies, information needs of both civilians and responders often require urgent, specialized treatment. Monitoring and summarizing a text stream during such an event remains a difficult problem. We present a system for update summarization which predicts the salience of sentences with respect to an event and then uses these predictions to directly bias a clustering algorithm for sentence selection, increasing the quality of the updates. We use novel, disaster-specific features for salience prediction, including geo-locations and language models representing the language of disaster. Our evaluation on a standard set of retrospective events using ROUGE shows that salience prediction provides a significant improvement over other approaches.

[1]  Ani Nenkova,et al.  The Impact of Frequency on Summarization , 2005 .

[2]  Hui Lin,et al.  A Class of Submodular Functions for Document Summarization , 2011, ACL.

[3]  Tao Li,et al.  Document update summarization using incremental hierarchical clustering , 2010, CIKM.

[4]  Dragomir R. Radev,et al.  Centroid-based summarization of multiple documents , 2004, Inf. Process. Manag..

[5]  Eduard H. Hovy,et al.  The Automated Acquisition of Topic Signatures for Text Summarization , 2000, COLING.

[6]  Andreas Stolcke,et al.  SRILM - an extensible language modeling toolkit , 2002, INTERSPEECH.

[7]  Francine Chen,et al.  A trainable document summarizer , 1995, SIGIR '95.

[8]  Tetsuya Sakai,et al.  TREC 2013 Temporal Summarization , 2013, TREC.

[9]  Chin-Yew Lin,et al.  ROUGE: A Package for Automatic Evaluation of Summaries , 2004, ACL 2004.

[10]  Lucy Vanderwende,et al.  Exploring Content Models for Multi-Document Summarization , 2009, NAACL.

[11]  William Yang Wang,et al.  Identifying Event Descriptions using Co-training with Online News Summaries , 2011, IJCNLP.

[12]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[13]  Feng Niu,et al.  Building an Entity-Centric Stream Filtering Test Collection for TREC 2012 , 2012, TREC.

[14]  Kathleen R. McKeown,et al.  SIMFINDER: A Flexible Clustering Tool for Summarization , 2001 .

[15]  Eduard H. Hovy,et al.  Automated Text Summarization and the SUMMARIST System , 1998, TIPSTER.

[16]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[17]  Weiwei Guo,et al.  Weiwei: A Simple Unsupervised Latent Semantics based Approach for Sentence Similarity , 2012, SemEval@NAACL-HLT.

[18]  Yiming Yang,et al.  Topic Detection and Tracking Pilot Study Final Report , 1998 .

[19]  Ani Nenkova,et al.  A Survey of Text Summarization Techniques , 2012, Mining Text Data.

[20]  Vasileios Hatzivassiloglou,et al.  Event-Based Extractive Summarization , 2004 .

[21]  Elad Yom-Tov,et al.  Updating Users about Time Critical Events , 2013, ECIR.

[22]  Karen Spärck Jones Automatic summarising: factors and directions , 1998, ArXiv.

[23]  Dragomir R. Radev,et al.  LexRank: Graph-based Lexical Centrality as Salience in Text Summarization , 2004, J. Artif. Intell. Res..

[24]  Leysia Palen,et al.  Working and sustaining the virtual "Disaster Desk" , 2013, CSCW.

[25]  James H. Martin,et al.  A vision for technology-mediated support for public participation & assistance in mass emergencies & disasters , 2010 .

[26]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.