The cryo-EM structure of the S-layer deinoxanthin-binding complex of Deinococcus radiodurans informs properties of its environmental interactions

[1]  M. Winterhalter,et al.  Structural analysis of the architecture and in situ localization of the main S-layer complex in Deinococcus radiodurans. , 2021, Structure.

[2]  Ashok Kumar,et al.  Ultraviolet-B Radiation Stress-Induced Toxicity and Alterations in Proteome of Deinococcus radiodurans , 2020, Microbial Physiology.

[3]  Marcel Fuciman,et al.  Photophysics of deinoxanthin, the keto-carotenoid bound to the main S-layer unit of Deinococcus radiodurans , 2020, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[4]  M. Winterhalter,et al.  Structural insights into the main S-layer unit of Deinococcus radiodurans reveal a massive protein complex with porin-like features , 2020, The Journal of Biological Chemistry.

[5]  Christopher J. Williams,et al.  Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix , 2019, Acta crystallographica. Section D, Structural biology.

[6]  D. Piano,et al.  The Role of Iron and Copper on the Oligomerization Dynamics of DR_2577, the Main S-Layer Protein of Deinococcus radiodurans , 2019, Front. Microbiol..

[7]  S. Raunser,et al.  SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM , 2019, Communications Biology.

[8]  W. Minor,et al.  Characterizing metal-binding sites in proteins with X-ray crystallography , 2018, Nature Protocols.

[9]  C. Slavov,et al.  Coexisting properties of thermostability and ultraviolet radiation resistance in the main S-layer complex of Deinococcus radiodurans , 2018, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[10]  J. Briggs,et al.  Structure of the hexagonal surface layer on Caulobacter crescentus cells , 2017, Nature Microbiology.

[11]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[12]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[13]  J. Naismith,et al.  MOMP from Campylobacter jejuni Is a Trimer of 18-Stranded β-Barrel Monomers with a Ca2 + Ion Bound at the Constriction Zone , 2016, Journal of molecular biology.

[14]  C. Slavov,et al.  The S-layer Protein DR_2577 Binds Deinoxanthin and under Desiccation Conditions Protects against UV-Radiation in Deinococcus radiodurans , 2016, Front. Microbiol..

[15]  Kai Zhang,et al.  Gctf: Real-time CTF determination and correction , 2015, bioRxiv.

[16]  S. McSweeney,et al.  Purification and characterization of DR_2577 (SlpA) a major S-layer protein from Deinococcus radiodurans , 2015, Front. Microbiol..

[17]  S. McSweeney,et al.  New features of the cell wall of the radio-resistant bacterium Deinococcus radiodurans. , 2014, Biochimica et biophysica acta.

[18]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[19]  S. Howorka,et al.  SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly , 2012, Nature.

[20]  M. Winterhalter,et al.  Antibiotic permeation across the OmpF channel: modulation of the affinity site in the presence of magnesium. , 2012, The journal of physical chemistry. B.

[21]  Amy K. Schmid,et al.  Involvement of the S-layer proteins Hpi and SlpA in the maintenance of cell envelope integrity in Deinococcus radiodurans R1. , 2006, Microbiology.

[22]  Amy K. Schmid,et al.  Involvement of the Slayer proteins Hpi and SlpA in the maintenance of cell envelope integrity in Deinococcus radiodurans R 1 , 2006 .

[23]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[24]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[25]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[26]  T. Lister,et al.  In-vivo Atomic Force Microscopy of Surface Proteins within Deinococcus Radiodurans , 2001 .

[27]  W Chiu,et al.  EMAN: semiautomated software for high-resolution single-particle reconstructions. , 1999, Journal of structural biology.

[28]  A. Engel,et al.  Structural changes in native membrane proteins monitored at subnanometer resolution with the atomic force microscope: a review. , 1997, Journal of structural biology.

[29]  S. Lortal,et al.  III. Biochemistry of S-layers , 1997 .

[30]  M. Blaser,et al.  Molecular biology of S-layers. , 1997, FEMS Microbiology Reviews.

[31]  U. Sleytr,et al.  Bacterial and archaeal S-layer proteins: structure-function relationships and their biotechnological applications. , 1997, Trends in biotechnology.

[32]  N. Saint,et al.  Structural and Functional Characterization of OmpF Porin Mutants Selected for Larger Pore Size , 1996, The Journal of Biological Chemistry.

[33]  R. Anderson,et al.  Glucosyl diglyceride lipid structures in Deinococcus radiodurans , 1995, Journal of bacteriology.

[34]  R. Anderson,et al.  Phosphatidylglyceroylalkylamine, a novel phosphoglycolipid precursor in Deinococcus radiodurans , 1991, Journal of bacteriology.

[35]  R. Anderson,et al.  Structure of a novel glucosamine-containing phosphoglycolipid from Deinococcus radiodurans. , 1989, The Journal of biological chemistry.

[36]  W. O. Saxton,et al.  Three-dimensional structure of the regular surface layer (HPI layer) of Deinococcus radiodurans. , 1986, Journal of molecular biology.

[37]  R. Anderson,et al.  Structure of a novel phosphoglycolipid from Deinococcus radiodurans. , 1985, The Journal of biological chemistry.

[38]  R. Mitchel,et al.  Ionizing radiation-induced release of a cell surface nuclease from Micrococcus radiodurans. , 1975, Radiation research.