Title Bayesian Inference for Non-Markovian Point Processes

The Bayesian approach to statistical inference has in recent years become very popular, especially in the analysis of complex data sets. This is largely due to the development of Markov chain Monte Carlo methods, which expand the scope of application of Bayesian methods considerably. In this paper, we review the Bayesian contributions to inference for point processes. We focus on non-Markovian processes, specifically Poisson and related models, doubly stochastic models, and cluster models. We also discuss Bayesian model selection for these models and give examples in which Bayes factors are applied both directly and indirectly through a reversible jump algorithm.

[1]  J. Møller,et al.  A CASE STUDY ON POINT PROCESS MODELLING IN DISEASE MAPPING , 2011 .

[2]  R. Wolpert,et al.  Perfect simulation and moment properties for the Matérn type III process , 2010 .

[3]  A. Gelfand,et al.  Handbook of spatial statistics , 2010 .

[4]  R. Wolpert,et al.  Likelihood-based inference for Matérn type-III repulsive point processes , 2009, Advances in Applied Probability.

[5]  Ryan P. Adams,et al.  Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities , 2009, ICML '09.

[6]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[7]  Dietrich Stoyan,et al.  Parameter Estimation and Model Selection for Neyman‐Scott Point Processes , 2008, Biometrical journal. Biometrische Zeitschrift.

[8]  D. Stoyan,et al.  Statistical Analysis and Modelling of Spatial Point Patterns , 2008 .

[9]  R. Waagepetersen,et al.  Modern Statistics for Spatial Point Processes * , 2007 .

[10]  Eva Bjørn Vedel Jensen,et al.  Bayesian analysis of spatial point processes in the neighbourhood of Voronoi networks , 2007, Stat. Comput..

[11]  A. Kottas,et al.  Bayesian mixture modeling for spatial Poisson process intensities, with applications to extreme value analysis , 2007 .

[12]  T. Thorarinsdottir,et al.  A Spatio‐Temporal Model for Functional Magnetic Resonance Imaging Data – with a View to Resting State Networks , 2007 .

[13]  Simon Godsill,et al.  Poisson point process modeling for polyphonic music transcription. , 2007, The Journal of the Acoustical Society of America.

[14]  R. Waagepetersen An Estimating Function Approach to Inference for Inhomogeneous Neyman–Scott Processes , 2007, Biometrics.

[15]  Tore Schweder,et al.  Likelihood-based inference for clustered line transect data , 2006 .

[16]  A. Kottas Dirichlet Process Mixtures of Beta Distributions , with Applications to Density and Intensity Estimation , 2006 .

[17]  Stephen M. Smith,et al.  Investigations into resting-state connectivity using independent component analysis , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[18]  Adrian E. Raftery,et al.  Classification of Mixtures of Spatial Point Processes via Partial Bayes Factors , 2005 .

[19]  Scott A. Sisson,et al.  Statistical Inference and Simulation for Spatial Point Processes , 2005 .

[20]  Rasmus Waagepetersen,et al.  Convergence of posteriors for discretized log Gaussian Cox processes , 2004 .

[21]  Agus Salim,et al.  Extensions of the Bartlett-Lewis model for rainfall processes , 2003 .

[22]  N. Hartvig,et al.  A Stochastic Geometry Model for Functional Magnetic Resonance Images , 2002 .

[23]  Ian W. McKeague,et al.  Perfect Sampling for Point Process Cluster Modelling , 2002 .

[24]  Ilkka Taskinen Cluster priors in the Bayesian modelling of fMRI data , 2001 .

[25]  Adrian Baddeley,et al.  Centrum Voor Wiskunde En Informatica Probability, Networks and Algorithms Probability, Networks and Algorithms Extrapolating and Interpolating Spatial Patterns Extrapolating and Interpolating Spatial Patterns , 2022 .

[26]  Y. Ogata Seismicity Analysis through Point-process Modeling: A Review , 1999 .

[27]  Yongdai Kim NONPARAMETRIC BAYESIAN ESTIMATORS FOR COUNTING PROCESSES , 1999 .

[28]  Vicki M. Bier,et al.  A natural conjugate prior for the nonhomogeneous poisson process with an exponential intensity function , 1999 .

[29]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[30]  J. Heikkinen,et al.  Non‐parametric Bayesian Estimation of a Spatial Poisson Intensity , 1998 .

[31]  J. Møller,et al.  Log Gaussian Cox Processes , 1998 .

[32]  R. Wolpert,et al.  Poisson/gamma random field models for spatial statistics , 1998 .

[33]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[34]  Lynn Kuo,et al.  Bayesian Computation for Nonhomogeneous Poisson Processes in Software Reliability , 1996 .

[35]  Adrian Baddeley,et al.  Markov properties of cluster processes , 1996, Advances in Applied Probability.

[36]  Peter Guttorp,et al.  Stochastic modeling of rainfall , 1996 .

[37]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[38]  N. Cressie,et al.  Asymptotic Properties of Estimators for the Parameters of Spatial Inhomogeneous Poisson Point Processes , 1994, Advances in Applied Probability.

[39]  D. Gamerman A dynamic approach to the statistical analysis of point processes , 1992 .

[40]  P. Guttorp Analysis of event-based precipitation data with a view toward modeling , 1988 .

[41]  A. Raftery,et al.  Bayes Factors for Non‐Homogeneous Poisson Processes with Vague Prior Information , 1986 .

[42]  P. Diggle A Kernel Method for Smoothing Point Process Data , 1985 .

[43]  Albert Y. Lo,et al.  On a class of Bayesian nonparametric estimates: II. Hazard rate estimates , 1989 .

[44]  Albert Y. Lo,et al.  Bayesian nonparametric statistical inference for Poisson point processes , 1982 .

[45]  J. Delleur,et al.  A stochastic cluster model of daily rainfall sequences , 1981 .

[46]  G. Shedler,et al.  Simulation of Nonhomogeneous Poisson Processes by Thinning , 1979 .

[47]  O. Aalen Nonparametric Inference for a Family of Counting Processes , 1978 .

[48]  P. Hobbs,et al.  Rainbands, Precipitation Cores and Generating Cells in a Cyclonic Storm , 1978 .

[49]  D. Cox,et al.  The statistical analysis of series of events , 1966 .

[50]  M. Bartlett The Spectral Analysis of Point Processes , 1963 .

[51]  Lucien Le Cam,et al.  A Stochastic Description of Precipitation , 1961 .

[52]  D. Cox Some Statistical Methods Connected with Series of Events , 1955 .

[53]  H. Jeffreys Some Tests of Significance, Treated by the Theory of Probability , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.