Genotyping of circulating tumor DNA in cholangiocarcinoma reveals diagnostic and prognostic information

[1]  F. Petrelli,et al.  Biliary tract cancer: current challenges and future prospects , 2018, Cancer management and research.

[2]  J. McPherson,et al.  Sensitive tumour detection and classification using plasma cell-free DNA methylomes , 2018, Nature.

[3]  R. Kelley,et al.  Pembrolizumab for advanced biliary adenocarcinoma: Results from the multicohort, phase II KEYNOTE-158 study. , 2018, Annals of oncology : official journal of the European Society for Medical Oncology.

[4]  Kevin K. Chang,et al.  KMT2C Mutations in Diffuse-Type Gastric Adenocarcinoma Promote Epithelial-to-Mesenchymal Transition , 2018, Clinical Cancer Research.

[5]  R. Kurzrock,et al.  Preoperative Circulating Tumor DNA in Patients with Peritoneal Carcinomatosis is an Independent Predictor of Progression-Free Survival , 2018, Annals of Surgical Oncology.

[6]  N. Schultz,et al.  Comprehensive Molecular Profiling of Intrahepatic and Extrahepatic Cholangiocarcinomas: Potential Targets for Intervention , 2018, Clinical Cancer Research.

[7]  T. Seufferlein,et al.  Liposomal irinotecan (nal-IRI) plus 5-fluorouracil (5-FU) and leucovorin (LV) or gemcitabine plus cisplatin in advanced cholangiocarcinoma: The AIO-NIFE-trial, an open label, randomized, multicenter phase II trial. , 2018 .

[8]  W. Fan,et al.  miR-27b-3p inhibits proliferation and potentially reverses multi-chemoresistance by targeting CBLB/GRB2 in breast cancer cells , 2018, Cell Death & Disease.

[9]  B. Taylor,et al.  HER kinase inhibition in patients with HER2- and HER3-mutant cancers , 2018, Nature.

[10]  T. Seufferlein,et al.  Targeted deep sequencing of circulating tumor DNA in metastatic pancreatic cancer , 2017, Oncotarget.

[11]  P. Philip,et al.  Phase II Study of BGJ398 in Patients With FGFR-Altered Advanced Cholangiocarcinoma. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[12]  A. Zhu,et al.  New Horizons for Precision Medicine in Biliary Tract Cancers. , 2017, Cancer discovery.

[13]  Sun Wook Cho,et al.  Genome-wide association and expression quantitative trait loci studies identify multiple susceptibility loci for thyroid cancer , 2017, Nature Communications.

[14]  E. Maher,et al.  Phase I study of AG-120, an IDH1 mutant enzyme inhibitor: Results from the cholangiocarcinoma dose escalation and expansion cohorts. , 2017 .

[15]  T. Bekaii-Saab,et al.  Biliary cancer: intrahepatic cholangiocarcinoma vs. extrahepatic cholangiocarcinoma vs. gallbladder cancers: classification and therapeutic implications. , 2017, Journal of gastrointestinal oncology.

[16]  M. Kurosaki,et al.  Serum Wisteria Floribunda Agglutinin-Positive Sialylated Mucin 1 as a Marker of Progenitor/Biliary Features in Hepatocellular Carcinoma , 2017, Scientific Reports.

[17]  Chris Sander,et al.  Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles , 2017, Cell reports.

[18]  P. Stephens,et al.  Biliary cancer: Utility of next‐generation sequencing for clinical management , 2016, Cancer.

[19]  T. Bekaii-Saab,et al.  Next‐generation sequencing survey of biliary tract cancer reveals the association between tumor somatic variants and chemotherapy resistance , 2016, Cancer.

[20]  Mingming Jia,et al.  COSMIC: somatic cancer genetics at high-resolution , 2016, Nucleic Acids Res..

[21]  T. Gruenberger,et al.  Biliary cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. , 2016, Annals of oncology : official journal of the European Society for Medical Oncology.

[22]  J. Vauthey,et al.  BRCA-associated protein 1 mutant cholangiocarcinoma: an aggressive disease subtype. , 2016, Journal of gastrointestinal oncology.

[23]  D. Gao,et al.  Mitogen‐activated protein kinase kinase kinase 4 deficiency in intrahepatic cholangiocarcinoma leads to invasive growth and epithelial‐mesenchymal transition , 2015, Hepatology.

[24]  Katherine Van Loon,et al.  Cell-Free DNA Next-Generation Sequencing in Pancreatobiliary Carcinomas. , 2015, Cancer discovery.

[25]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[26]  Hiromi Nakamura,et al.  Genomic spectra of biliary tract cancer , 2015, Nature Genetics.

[27]  P. Stephens,et al.  Comprehensive genomic profiling of biliary tract cancers to reveal tumor-specific differences and frequency of clinically relevant genomic alterations. , 2015 .

[28]  G. Mills,et al.  Mutation Profiling in Cholangiocarcinoma: Prognostic and Therapeutic Implications , 2014, PloS one.

[29]  Nansheng Chen,et al.  Mutational landscape of intrahepatic cholangiocarcinoma , 2014, Nature Communications.

[30]  F. Lammert,et al.  Gemcitabine plus sorafenib versus gemcitabine alone in advanced biliary tract cancer: a double-blind placebo-controlled multicentre phase II AIO study with biomarker and serum programme. , 2014, European journal of cancer.

[31]  R. Gatenby,et al.  Evolutionary triage governs fitness in driver and passenger mutations and suggests targeting never mutations , 2014, Nature Communications.

[32]  H. El‐Serag,et al.  Secular Trends in the Incidence of Cholangiocarcinoma in the USA and the Impact of Misclassification , 2014, Digestive Diseases and Sciences.

[33]  David M. Jones,et al.  New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. , 2014, The oncologist.

[34]  Shu-guang Wang,et al.  Aberrant expression of GATA binding protein 6 correlates with poor prognosis and promotes metastasis in cholangiocarcinoma. , 2013, European journal of cancer.

[35]  H. Karim-Kos,et al.  Intrahepatic cholangiocarcinoma in a low endemic area: rising incidence and improved survival. , 2012, HPB : the official journal of the International Hepato Pancreato Biliary Association.

[36]  Julia C. Engelmann,et al.  Commonly altered genomic regions in acute myeloid leukemia are enriched for somatic mutations involved in chromatin remodeling and splicing. , 2012, Blood.

[37]  Derek Y. Chiang,et al.  Mutations in Isocitrate Dehydrogenase 1 and 2 Occur Frequently in Intrahepatic Cholangiocarcinomas and Share Hypermethylation Targets with Glioblastomas , 2012, Oncogene.

[38]  P. A. Futreal,et al.  Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. , 2012, The New England journal of medicine.

[39]  R. Brunelli,et al.  Biliary tree stem/progenitor cells in glands of extrahepatic and intraheptic bile ducts: an anatomical in situ study yielding evidence of maturational lineages , 2012, Journal of anatomy.

[40]  Massimo Rossi,et al.  Multipotent stem/progenitor cells in human biliary tree give rise to hepatocytes, cholangiocytes, and pancreatic islets , 2011, Hepatology.

[41]  M. Manns,et al.  Epidemiological trends in incidence and mortality of hepatobiliary cancers in Germany , 2011, Scandinavian journal of gastroenterology.

[42]  H. El‐Serag,et al.  Risk factors for cholangiocarcinoma , 2011, Hepatology.

[43]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[44]  K. Sugano,et al.  Endoscopic diagnosis of extrahepatic bile duct carcinoma: Advances and current limitations. , 2011, World journal of clinical oncology.

[45]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[46]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[47]  D. Cunningham,et al.  Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. , 2010, The New England journal of medicine.

[48]  Yun Yen,et al.  NCCN clinical practice guidelines in oncology: hepatobiliary cancers. , 2009, Journal of the National Comprehensive Cancer Network : JNCCN.

[49]  M. Beg,et al.  Intrahepatic versus extrahepatic cholangiocarcinoma: Is there a difference in survival? , 2008 .

[50]  M. van de Rijn,et al.  Genomic Profiling Identifies GATA6 as a Candidate Oncogene Amplified in Pancreatobiliary Cancer , 2008, PLoS genetics.

[51]  S. Hirohashi,et al.  Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma , 2007, British Journal of Cancer.

[52]  B. Portmann,et al.  The canals of hering and hepatic stem cells in humans , 1999, Hepatology.

[53]  Sedro Indqgnsiuper,et al.  Biliary , 1993, Definitions.

[54]  S. Hirohashi,et al.  Clinicopathological and prognostic significance of EGFR , VEGF , and HER 2 expression in cholangiocarcinoma , 2010 .

[55]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..