High Order Moment Model for Polydisperse Evaporating Sprays towards Interfacial Geometry Description

In this paper we propose a new Eulerian modeling and related accurate and robust numerical methods, describing polydisperse evaporating sprays, based on high order moment methods in size. The main novelty of this model is its capacity to describe some geometrical variables of the droplet-gas interface, by analogy with the liquid-gas interface in interfacial flows. For this purpose, we use fractional size-moments, where the size variable is taken as the droplet surface. In order to evaluate the evaporation of the polydisperse spray, we use a smooth reconstruction which maximizes the Shannon entropy. However, the use of fractional moments introduces some theoretical and numerical difficulties, which need to be tackled. First, relying on a study of the moment space, we extend the Maximum Entropy (ME) reconstruction of the size distribution to the case of fractional moments. Then, we propose a new accurate and realizable algorithm to solve the moment evolution due to evaporation, which preserves the structure of the moment space. This algorithm is based on a mathematical analysis of the kinetic evolution due to evaporation, where it shown that the evolution of some negative order fractional moments have to be properly predicted, a peculiarity related to the use of fractional moments. The present model and numerical schemes yield an accurate and stable evaluation of the moment dynamics with minimal number of variables, as well as a minimal computational cost as with the EMSM model, but with the very interesting additional capacity of coupling with diffuse interface model and transport equation of averaged geometrical interface variables, which are essential in oder to describe atomization.

[1]  F. Williams Spray Combustion and Atomization , 1958 .

[2]  H. Grad Principles of the Kinetic Theory of Gases , 1958 .

[3]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[4]  Roy G. Gordon,et al.  Error Bounds in Equilibrium Statistical Mechanics , 1968 .

[5]  D. Drew Mathematical Modeling of Two-Phase Flow , 1983 .

[6]  L. Mead,et al.  Maximum entropy in the problem of moments , 1984 .

[7]  M. Baer,et al.  A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials , 1986 .

[8]  G. Talenti Recovering a function from a finite number of moments , 1987 .

[9]  Michael Frenklach,et al.  Aerosol dynamics modeling using the method of moments , 1987 .

[10]  D. Drew Evolution of geometric statistics , 1990 .

[11]  J. N. Kapur,et al.  Entropy optimization principles with applications , 1992 .

[12]  Y. Tambour,et al.  On the origins of spray sectional conservation equations , 1993 .

[13]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[14]  C. D. Levermore,et al.  Moment closure hierarchies for kinetic theories , 1996 .

[15]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[16]  Robert McGraw,et al.  Description of Aerosol Dynamics by the Quadrature Method of Moments , 1997 .

[17]  Holger Dette,et al.  The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis , 1997 .

[18]  C. David Levermore,et al.  The Gaussian Moment Closure for Gas Dynamics , 1998, SIAM J. Appl. Math..

[19]  D. Drew,et al.  Theory of Multicomponent Fluids , 1998 .

[20]  Aldo Tagliani,et al.  Hausdorff moment problem and maximum entropy: A unified approach , 1999, Appl. Math. Comput..

[21]  R. Abgrall,et al.  A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .

[22]  A. Burluka,et al.  DEVELOPMENT OF A EULERIAN MODEL FOR THE “ATOMIZATION” OF A LIQUID JET , 2001 .

[23]  C. Dumouchel MEASUREMENT OF BREAKUP LENGTH OF CYLINDRICAL LIQUID JETS. APPLICATION TO LOW-PRESSURE CAR INJECTOR , 2001 .

[24]  M. Frenklach Method of moments with interpolative closure , 2002 .

[25]  Shi Jin,et al.  Numerical Approximations of Pressureless and Isothermal Gas Dynamics , 2003, SIAM J. Numer. Anal..

[26]  Markus Kraft,et al.  Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygen-argon flame , 2003 .

[27]  Aldo Tagliani,et al.  Hausdorff moment problem via fractional moments , 2002, Appl. Math. Comput..

[28]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[29]  F. Laurent,et al.  Eulerian multi-fluid modeling for the numerical simulation of coalescence in polydisperse dense liquid sprays , 2004 .

[30]  Daniele Marchisio,et al.  Solution of population balance equations using the direct quadrature method of moments , 2005 .

[31]  G. Bruneaux Mixing Process in High Pressure Diesel Jets by Normalized Laser Induced Exciplex Fluorescence Part I: Free Jet , 2005 .

[32]  S. Jay,et al.  Combined surface density concepts for dense spray combustion , 2006 .

[33]  M. Ishii,et al.  Thermo-Fluid Dynamics of Two-Phase Flow , 2007 .

[34]  T. Ménard,et al.  Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet , 2007 .

[35]  Heinz Pitsch,et al.  Hybrid Method of Moments for modeling soot formation and growth , 2009 .

[36]  Marc Massot,et al.  Combustion for aerospace propulsion Eulerian models for turbulent spray combustion with polydispersity and droplet crossing , 2009 .

[37]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[38]  F. X. Demoulin,et al.  Numerical simulation of primary break-up and atomization: DNS and modelling study , 2009 .

[39]  S. Chaisemartin,et al.  Robust numerical schemes for Eulerian spray DNS and LES in two-phase turbulent flows , 2010 .

[40]  Paul W. Nyholm,et al.  Engine combustion network. , 2010 .

[41]  A. Umemura,et al.  Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation , 2010 .

[42]  Henryk Gzyl,et al.  Hausdorff moment problem and fractional moments , 2010, Appl. Math. Comput..

[43]  Marc Massot,et al.  A Robust Moment Method for Evaluation of the Disappearance Rate of Evaporating Sprays , 2010, SIAM J. Appl. Math..

[44]  Carsten Burstedde,et al.  p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees , 2011, SIAM J. Sci. Comput..

[45]  Aldo Tagliani Hausdorff moment problem and fractional moments: A simplified procedure , 2011, Appl. Math. Comput..

[46]  Akira Umemura,et al.  Surface instability and primary atomization characteristics of straight liquid jet sprays , 2011 .

[47]  F. Laurent,et al.  An extended quadrature method of moments for population balance equations , 2003 .

[48]  Marc Massot,et al.  A high order moment method simulating evaporation and advection of a polydisperse liquid spray , 2012, J. Comput. Phys..

[49]  Maarten Meijer,et al.  Characterization of a Set of ECN Spray A Injectors: Nozzle to Nozzle Variations and Effect on Spray Characteristics , 2013 .

[50]  Olivier Desjardins,et al.  DIRECT NUMERICAL AND LARGE-EDDY SIMULATION OF PRIMARY ATOMIZATION IN COMPLEX GEOMETRIES , 2013 .

[51]  Marc Massot,et al.  Eulerian multi-fluid models for the simulation of dynamics and coalescence of particles in solid propellant combustion , 2013, J. Comput. Phys..

[52]  M. Arienti,et al.  An embedded level set method for sharp-interface multiphase simulations of Diesel injectors , 2014 .

[53]  Marc Massot,et al.  Size-velocity correlations in hybrid high order moment/multi-fluid methods for polydisperse evaporating sprays: Modeling and numerical issues , 2013, J. Comput. Phys..

[54]  Heinz Pitsch,et al.  Combination of 3D unsplit forward and backward volume-of-fluid transport and coupling to the level set method , 2013, J. Comput. Phys..

[55]  François Doisneau Eulerian modeling and simulation of polydisperse moderately dense coalescing spray flows with nanometric-to-inertial droplets : application to Solid Rocket Motors , 2013 .

[56]  Marc Massot,et al.  Numerical Strategy for Unsteady Two-Way Coupled Polydisperse Sprays: Application to Solid-Rocket Instabilities , 2014 .

[57]  Frédérique Laurent,et al.  Analysis of Operator Splitting in the Nonasymptotic Regime for Nonlinear Reaction-Diffusion Equations. Application to the Dynamics of Premixed Flames , 2014, SIAM J. Numer. Anal..

[58]  W. Gumprich,et al.  ASSESSMENT OF THE DIRECT QUADRATURE-BASED SECTIONAL METHOD OF MOMENTS FOR THE SIMULATION OF EVAPORATING POLYDISPERSE SPRAYS , 2014 .

[59]  O. Emre Modeling of spray polydispersion with two-way turbulent interactions for high pressure direct injection in engines , 2014 .

[60]  Boniface Nkonga,et al.  Towards the direct numerical simulation of nucleate boiling flows , 2014 .

[61]  S. Chaisemartin,et al.  EULERIAN MOMENT METHODS FOR AUTOMOTIVE SPRAYS , 2015 .

[62]  B. M. Devassy,et al.  Atomization modelling of liquid jets using a two-surface density approach. , 2015 .

[63]  Julien Manin,et al.  Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames , 2015 .

[64]  Marc Massot,et al.  Robust Numerical Coupling of Pressure and Pressureless Gas Dynamics Equations for Eulerian Spray DNS and LES , 2015, SIAM J. Sci. Comput..

[65]  G. Bruneaux,et al.  Two-tracer LIF imaging of preferential evaporation of multi-component gasoline fuel sprays under engine conditions , 2015 .

[66]  Marc Massot,et al.  A hierarchy of simple hyperbolic two-fluid models for bubbly flows , 2016, 1607.08233.

[67]  Marc Massot,et al.  Solution of population balance equations in applications with fine particles: Mathematical modeling and numerical schemes , 2016, J. Comput. Phys..

[68]  Frédérique Laurent,et al.  Two-size moment multi-fluid model: a robust and high-fidelity description of polydisperse moderately dense evaporating sprays , 2016 .

[69]  Daniele Marchisio,et al.  Bivariate extensions of the Extended Quadrature Method of Moments (EQMOM) to describe coupled droplet evaporation and heat-up , 2016 .

[70]  Macole Sabat Eulerian modeling and numerical methods for the description of turbulent polydisperse sprays. (Modèles euleriens et méthodes numériques pour la description des sprays polydisperses turbulents) , 2016 .

[71]  J. O’Connor,et al.  Effect of post injections on mixture preparation and unburned hydrocarbon emissions in a heavy-duty diesel engine , 2016 .

[72]  Antonio Andreini,et al.  Development of a turbulent liquid flux model for Eulerian–Eulerian multiphase flow simulations , 2016 .

[73]  M. Doring,et al.  A consistent mass and momentum flux computation method for two phase flows. Application to atomization process , 2017 .

[74]  Alexandru Fikl,et al.  Experimenting with the p4est library for AMR simulations of two-phase flows , 2016, ArXiv.

[75]  Carlos Pantano,et al.  Diffuse-Interface Capturing Methods for Compressible Two-Phase Flows , 2018 .

[76]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[77]  F. Laurent,et al.  Size-velocity correlations in high order moment methods for polydisperse evaporating sprays: modeling and numerical issues , 2011 .

[78]  Marc Massot,et al.  Statistical modeling of the gas–liquid interface using geometrical variables: Toward a unified description of the disperse and separated phase flows , 2017, International Journal of Multiphase Flow.

[79]  S. Pearson Moments , 2020, Narrative inquiry in bioethics.