Impact of SiN Composition Variation on SANOS Memory Performance and Reliability Under nand (FN/FN) Operation

Despite significant advances in structure and material optimization, poor erase (E) speeds and high retention charge loss remain the challenging issues for charge trap flash (CTF) memories. In this paper, the dependence of SANOS memory performance and reliability on the composition of silicon nitride (SiN) layer is extensively studied. The effect of varying the Si:N ratio on program (P)/E and retention characteristics is investigated. SiN composition is shown to significantly alter the electron and hole trap properties. Varying the SiN composition from N-rich (N+) to Si-rich ( Si+) lowers electron trap depth but increases hole trap depth, causing lower P state saturation but significant over erase, resulting in an enhanced memory window. During retention, P state charge loss depends on thermal emission followed by the tunneling out of electrons mostly through tunnel dielectric, which becomes worse for Si+ SiN. Erase state charge loss mainly depends on hole redistribution under the influence of internal electric fields, which improves with Si+ SiN. This paper identifies several important performances versus reliability tradeoffs to be considered during the optimization of SiN layer composition. It also explores the option for CTF optimization through the engineering of SiN stoichiometry for multilevel cell NAND flash applications.

[1]  Hyungcheol Shin,et al.  Electron trap density distribution of Si-rich silicon nitride extracted using the modified negative charge decay model of silicon-oxide-nitride-oxide-silicon structure at elevated temperatures , 2006 .

[2]  Keonsoo Kim,et al.  Direct Field Effect of Neighboring Cell Transistor on Cell-to-Cell Interference of nand Flash Cell Arrays , 2009, IEEE Electron Device Letters.

[3]  S. Deleonibus,et al.  Performance and reliability features of advanced nonvolatile memories based on discrete traps (silicon nanocrystals, SONOS) , 2004, IEEE Transactions on Device and Materials Reliability.

[4]  J. Van Houdt High-k materials for nonvolatile memory applications , 2005 .

[5]  Jin-Ki Kim,et al.  A 3.3 V 32 Mb NAND flash memory with incremental step pulse programming scheme , 1995, Proceedings ISSCC '95 - International Solid-State Circuits Conference.

[6]  Konstantin K. Likharev,et al.  Layered tunnel barriers for nonvolatile memory devices , 1998 .

[7]  R. Berjoan,et al.  Structural properties of N-rich a-Si - N:H films with a low electron-trapping rate , 1997 .

[8]  Paul J. McWhorter,et al.  Effect of temperature on data retention of silicon‐oxide‐nitride‐oxide‐semiconductor nonvolatile memory transistors , 1990 .

[9]  Tahone Yang,et al.  Reliability and Processing Effects of Bandgap Engineered SONOS (BE-SONOS) Flash Memory , 2007, 2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual.

[10]  Amphoteric trap modeling of multidielectric scaled SONOS nonvolatile memory structures , 1987 .

[11]  R. Williams,et al.  The effect of electrical conduction of Si3N4on the discharge of MNOS memory transistors , 1978, IEEE Transactions on Electron Devices.

[12]  S. Mahapatra,et al.  Comprehensive Simulation of Program, Erase and Retention in Charge Trapping Flash Memories , 2006, 2006 International Electron Devices Meeting.

[13]  G. Pei,et al.  Metal nanocrystal memories-part II: electrical characteristics , 2002 .

[14]  Kinam Kim,et al.  A novel SONOS structure of SiO/sub 2//SiN/Al/sub 2/O/sub 3/ with TaN metal gate for multi-giga bit flash memories , 2003, IEEE International Electron Devices Meeting 2003.

[15]  S. Haddad,et al.  Non-volatile resistive switching for advanced memory applications , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[16]  Kinam Kim,et al.  Charge-trapping device structure of SiO2∕SiN∕high-k dielectric Al2O3 for high-density flash memory , 2005 .

[17]  Yu Wang,et al.  An analytical retention model for SONOS nonvolatile memory devices in the excess electron state , 2005 .

[18]  Jui-Wen Chang,et al.  Two-bit SONOS type Flash using a band engineering in the nitride layer , 2005 .

[19]  Y. Okuyama,et al.  Characterization of Charge Traps in Metal-Oxide-Nitride-Oxide-Semiconductor (MONOS) Structures for Embedded Flash Memories , 2006, 2006 IEEE International Reliability Physics Symposium Proceedings.

[20]  Krishna Shenai,et al.  VLSI Technology , 1999, The VLSI Handbook.

[21]  Operational Voltage Reduction of Flash Memory Using High-κ Composite Tunnel Barriers , 2008 .

[22]  S. Mahapatra,et al.  Effect of SiN on Performance and Reliability of Charge Trap Flash (CTF) Under Fowler–Nordheim Tunneling Program/Erase Operation , 2009, IEEE Electron Device Letters.

[23]  K. Ahmed,et al.  The effect of band gap engineering of the nitride storage node on performance and reliability of charge trap flash , 2008, 2008 15th International Symposium on the Physical and Failure Analysis of Integrated Circuits.

[24]  K. Kim The Future Prospect of Semiconductor Nonvolatile Memory , 2006, INTERMAG 2006 - IEEE International Magnetics Conference.

[25]  Operational Voltage Reduction of Flash Memory Using High-$\kappa$ Composite Tunnel Barriers , 2008, IEEE Electron Device Letters.

[26]  John Robertson,et al.  Gap states in silicon nitride , 1984 .

[27]  S. Jakschik,et al.  Transport mechanisms in atomic-layer-deposited Al2O3 dielectrics , 2004 .

[28]  Kinam Kim,et al.  Technology for sub-50nm DRAM and NAND flash manufacturing , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[29]  Hans Reisinger,et al.  Transient conduction in multidielectric silicon–oxide–nitride–oxide semiconductor structures , 2001 .

[30]  J. Robertson,et al.  Defect and impurity states in silicon nitride , 1983 .

[31]  Kinam Kim,et al.  The future prospect of nonvolatile memory , 2005, IEEE VLSI-TSA International Symposium on VLSI Technology, 2005. (VLSI-TSA-Tech)..

[32]  Jangho Park,et al.  Integration Technology of 30nm Generation Multi-Level NAND Flash for 64Gb NAND Flash Memory , 2007, 2007 IEEE Symposium on VLSI Technology.

[33]  S. McAlister,et al.  Improved High Temperature Retention for Charge-Trapping Memory by Using Double Quantum Barriers , 2008, IEEE Electron Device Letters.

[34]  K. Ahmed,et al.  Nitride engineering and the effect of interfaces on Charge Trap Flash performance and reliability , 2008, 2008 IEEE International Reliability Physics Symposium.

[35]  M. Petersen,et al.  Density functional theory study of deep traps in silicon nitride memories , 2006 .

[36]  M. White,et al.  Characterization of SONOS oxynitride nonvolatile semiconductor memory devices , 2003 .

[37]  J. Slaughter,et al.  Progress and outlook for MRAM technology , 1999, IEEE International Magnetics Conference.

[38]  G. Pei,et al.  Metal nanocrystal memories. I. Device design and fabrication , 2002 .

[39]  Rich Liu,et al.  A Study of Gate-Sensing and Channel-Sensing (GSCS) Transient Analysis Method—Part I: Fundamental Theory and Applications to Study of the Trapped Charge Vertical Location and Capture Efficiency of SONOS-Type Devices , 2008, IEEE Transactions on Electron Devices.

[40]  M. Rosmeulen,et al.  VARIOT: a novel multilayer tunnel barrier concept for low-voltage nonvolatile memory devices , 2003, IEEE Electron Device Letters.

[41]  Y. Shih,et al.  BE-SONOS: A bandgap engineered SONOS with excellent performance and reliability , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[42]  U. Chung,et al.  Band Engineered Charge Trap Layer for highly Reliable MLC Flash Memory , 2007, 2007 IEEE Symposium on VLSI Technology.