Tuning seismic resolution by heterodyning

This paper presents a new seismic data analysis and interpretation tool—the heterodyning technique of radio engineering. When applied to seismic data, it enables us to tune up seismic apparent resolution by shifting the dominant frequency of the signal with a given frequency bandwidth. Heterodyning provides a trade-off between detection precision and the signal-to-noise structure of the seismic data field. This is realized by tuning the amount of sidelobe energy and the phase characteristics of the seismic signals. Moderate phase rolls introduced by heterodyning do not affect the interpretation process because the subtlety in the behaviour of individual peaks and troughs is preserved and the eye tolerates gradual changes in phase characteristics. For steeply dipping beds, horizon flattening can be used to minimize the phase roll. In this paper, we introduce the principles of heterodyning and illustrate the process using both synthetic and real data.

[1]  Walter I. Futterman,et al.  Dispersive body waves , 1962 .

[2]  A. Barnes Instantaneous spectral bandwidth and dominant frequency with applications to seismic reflection data , 1993 .

[3]  M. Skolnik,et al.  Introduction to Radar Systems , 2021, Advances in Adaptive Radar Detection and Range Estimation.

[4]  Matt Hall,et al.  Resolution and uncertainty in spectral decomposition , 2006 .

[5]  Yanghua Wang,et al.  A stable and efficient approach of inverse Q filtering , 2002 .

[6]  Khaled H. Hamed,et al.  Time-frequency analysis , 2003 .

[7]  Sven Treitel,et al.  Geophysical Signal Analysis , 2000 .

[8]  Einar Kjartansson,et al.  Constant Q-wave propagation and attenuation , 1979 .

[9]  L. C. Wood,et al.  The limits of resolution of zero-phase wavelets , 1982 .

[10]  S. M. Doherty,et al.  Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data , 2000 .

[11]  M. B. Widess Quantifying resolving power of seismic systems , 1982 .

[12]  A. Meskó,et al.  Digital filtering: Applications in geophysical exploration for oil , 1984 .

[13]  A. Berkhout Seismic Resolution: A Quantitative Analysis of Resolving Power of Acoustical Echo Techniques , 1984 .

[14]  N. Ricker The Form and Laws of Propagation of Seismic Wavelets , 1951 .

[15]  Alexander Droujinine,et al.  Multi-scale geophysical data analysis using the eigenimage discrete wavelet transform , 2006 .

[16]  I. M. Mason,et al.  Maximum entropy analysis of dispersed seismic signals , 1986 .

[17]  S. Chopra,et al.  High-frequency restoration of surface seismic data , 2003 .

[18]  S. Treitel PREDICTIVE DECONVOLUTION: THEORY AND PRACTICE , 1969 .

[19]  J. P. Lindsey,et al.  The Fresnel zone and its interpretive significance , 1989 .

[20]  John W. C. Robinson,et al.  A technique for the continuous representation of dispersion in seismic data , 1979 .

[21]  M. Taner,et al.  Complex seismic trace analysis , 1979 .

[22]  J. White,et al.  Underground Sound: Application of Seismic Waves , 1983 .

[23]  D. J. Buchanan,et al.  Channel wave mapping of coal seams in the United Kingdom , 1980 .

[24]  Tadeusz J. Ulrych,et al.  Estimation of quality factors from CMP records , 2002 .

[25]  Yanghua Wang,et al.  Quantifying the effectiveness of stabilized inverse Q filtering , 2003 .