Modeling anisotropic surface reflectance with example-based microfacet synthesis

We present a new technique for the visual modeling of spatiallyvarying anisotropic reflectance using data captured from a single view. Reflectance is represented using a microfacet-based BRDF which tabulates the facets' normal distribution (NDF) as a function of surface location. Data from a single view provides a 2D slice of the 4D BRDF at each surface point from which we fit a partial NDF. The fitted NDF is partial because the single view direction coupled with the set of light directions covers only a portion of the "half-angle" hemisphere. We complete the NDF at each point by applying a novel variant of texture synthesis using similar, overlapping partial NDFs from other points. Our similarity measure allows azimuthal rotation of partial NDFs, under the assumption that reflectance is spatially redundant but the local frame may be arbitrarily oriented. Our system includes a simple acquisition device that collects images over a 2D set of light directions by scanning a linear array of LEDs over a flat sample. Results demonstrate that our approach preserves spatial and directional BRDF details and generates a visually compelling match to measured materials.

[1]  P. Beckmann Shadowing of random rough surfaces , 1965 .

[2]  B. Smith,et al.  Geometrical shadowing of a random rough surface , 1967 .

[3]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[4]  Robert L Cook,et al.  A reflectance model for computer graphics , 1981, SIGGRAPH '81.

[5]  James T. Kajiya,et al.  Anisotropic reflection models , 1985, SIGGRAPH.

[6]  Pierre Poulin,et al.  A model for anisotropic reflection , 1990, SIGGRAPH.

[7]  Stephen H. Westin,et al.  Predicting reflectance functions from complex surfaces , 1992, SIGGRAPH.

[8]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[9]  William H. Press,et al.  Numerical recipes in C++: the art of scientific computing, 2nd Edition (C++ ed., print. is corrected to software version 2.10) , 1994 .

[10]  Katsuhiko Inagaki,et al.  A shading model for cloth objects , 1992, IEEE Computer Graphics and Applications.

[11]  Richard Szeliski,et al.  The lumigraph , 1996, SIGGRAPH.

[12]  Donald P. Greenberg,et al.  Non-linear approximation of reflectance functions , 1997, SIGGRAPH.

[13]  Szymon Rusinkiewicz,et al.  A New Change of Variables for Efficient BRDF Representation , 1998, Rendering Techniques.

[14]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1999, TOGS.

[15]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Peter Shirley,et al.  An Anisotropic Phong BRDF Model , 2000, J. Graphics, GPU, & Game Tools.

[17]  Paul E. Debevec,et al.  Acquiring the reflectance field of a human face , 2000, SIGGRAPH.

[18]  Peter Shirley,et al.  A microfacet-based BRDF generator , 2000, SIGGRAPH.

[19]  Kristin J. Dana BRDF/BTF measurement device , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[20]  Alexei A. Efros,et al.  Image quilting for texture synthesis and transfer , 2001, SIGGRAPH.

[21]  Anselmo Lastra,et al.  Efficient rendering of spatial bi-directional reflectance distribution functions , 2002, HWWS '02.

[22]  Andrew Gardner,et al.  Linear light source reflectometry , 2003, ACM Trans. Graph..

[23]  Hans-Peter Seidel,et al.  Planned Sampling of Spatially Varying BRDFs , 2003, Comput. Graph. Forum.

[24]  Wojciech Matusik,et al.  A data-driven reflectance model , 2003, ACM Trans. Graph..

[25]  Irfan A. Essa,et al.  Graphcut textures: image and video synthesis using graph cuts , 2003, ACM Trans. Graph..

[26]  Hans-Peter Seidel,et al.  Image-based reconstruction of spatial appearance and geometric detail , 2003, TOGS.

[27]  Steve Marschner,et al.  Light scattering from human hair fibers , 2003, ACM Trans. Graph..

[28]  Ken Perlin,et al.  Measuring bidirectional texture reflectance with a kaleidoscope , 2003, ACM Trans. Graph..

[29]  Ralf Sarlette,et al.  Acquisition, Synthesis, and Rendering of Bidirectional Texture Functions , 2005, Comput. Graph. Forum.

[30]  S. Marschner,et al.  Measuring and modeling the appearance of finished wood , 2005, SIGGRAPH 2005.

[31]  Ravi Ramamoorthi,et al.  Reflectance sharing: image-based rendering from a sparse set of images , 2005, EGSR '05.

[32]  Frédo Durand,et al.  Experimental analysis of BRDF models , 2005, EGSR '05.

[33]  Steven M. Seitz,et al.  Shape and Spatially-Varying BRDFs from Photometric Stereo , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Shree K. Nayar,et al.  Time-varying surface appearance , 2006, SIGGRAPH 2006.

[35]  Wojciech Matusik,et al.  Inverse shade trees for non-parametric material representation and editing , 2006, SIGGRAPH 2006.

[36]  Marc Levoy,et al.  Symmetric photography: exploiting data-sparseness in reflectance fields , 2006, EGSR '06.

[37]  Tim Weyrich,et al.  Principles of appearance acquisition and representation , 2007, SIGGRAPH '08.

[38]  Jitendra Malik,et al.  Recovering high dynamic range radiance maps from photographs , 1997, SIGGRAPH '08.