Rational design of DNA nanoarchitectures.

DNA has many physical and chemical properties that make it a powerful material for molecular constructions at the nanometer length scale. In particular, its ability to form duplexes and other secondary structures through predictable nucleotide-sequence-directed hybridization allows for the design of programmable structural motifs which can self-assemble to form large supramolecular arrays, scaffolds, and even mechanical and logical nanodevices. Despite the large variety of structural motifs used as building blocks in the programmed assembly of supramolecular DNA nanoarchitectures, the various modules share underlying principles in terms of the design of their hierarchical configuration and the implemented nucleotide sequences. This Review is intended to provide an overview of this fascinating and rapidly growing field of research from the structural design point of view.

[1]  Karin Musier-Forsyth,et al.  Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. , 2005, Nano letters.

[2]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[3]  Nadrian C. Seeman,et al.  Translation of DNA Signals into Polymer Assembly Instructions , 2004, Science.

[4]  Itamar Willner,et al.  Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. , 2004, Angewandte Chemie.

[5]  Grzegorz Rozenberg,et al.  Aspects of molecular computing : essays dedicated to Tom Head on the occasion of his 70th birthday , 2004 .

[6]  N C Seeman,et al.  Torsional control of double-stranded DNA branch migration. , 1998, Biopolymers.

[7]  P. Schultz,et al.  Organization of 'nanocrystal molecules' using DNA , 1996, Nature.

[8]  N. Seeman,et al.  DNA junctions, antijunctions, and mesojunctions. , 1992, Biochemistry.

[9]  Kurt V Gothelf,et al.  DNA-programmed assembly of nanostructures. , 2005, Organic & biomolecular chemistry.

[10]  Günter von Kiedrowski,et al.  DNA nanotechnology: Chemical copying of connectivity , 2002, Nature.

[11]  Chengde Mao,et al.  Self-assembly of hexagonal DNA two-dimensional (2D) arrays. , 2005, Journal of the American Chemical Society.

[12]  Michael Zuker,et al.  Algorithms and Thermodynamics for RNA Secondary Structure Prediction: A Practical Guide , 1999 .

[13]  A. Turberfield,et al.  Engineering a 2D protein-DNA crystal. , 2005, Angewandte Chemie.

[14]  Jörg Peplies,et al.  Covalent DNA-Streptavidin Conjugates as Building Blocks for Novel Biometallic Nanostructures. , 1998, Angewandte Chemie.

[15]  M. Frank-Kamenetskii,et al.  Two sides of the coin: affinity and specificity of nucleic acid interactions. , 2004, Trends in biochemical sciences.

[16]  Wolfgang Banzhaf,et al.  Microarray-based in vitro evaluation of DNA oligomer libraries designed in silico. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[17]  Hao Yan,et al.  DNA-templated self-assembly of protein and nanoparticle linear arrays. , 2004, Journal of the American Chemical Society.

[18]  João Meidanis,et al.  Introduction to computational molecular biology , 1997 .

[19]  N. Seeman,et al.  A robust DNA mechanical device controlled by hybridization topology , 2002, Nature.

[20]  D Blohm,et al.  Evaluation of single-stranded nucleic acids as carriers in the DNA-directed assembly of macromolecules. , 1999, Journal of biomolecular structure & dynamics.

[21]  Masayuki Endo,et al.  Programmable DNA translation system using cross-linked DNA mediators. , 2005, Chemical communications.

[22]  C. Mao,et al.  Tensegrity: construction of rigid DNA triangles with flexible four-arm DNA junctions. , 2004, Journal of the American Chemical Society.

[23]  C. Niemeyer,et al.  Nucleic Acid Supercoiling as a Means for Ionic Switching of DNA–Nanoparticle Networks , 2001, Chembiochem : a European journal of chemical biology.

[24]  N C Seeman,et al.  Assembly and characterization of five-arm and six-arm DNA branched junctions. , 1991, Biochemistry.

[25]  Neocles B. Leontis,et al.  Bulged 3-arm DNA branched junctions as components for nanoconstruction , 1994 .

[26]  C. Mirkin Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks. , 2000, Inorganic chemistry.

[27]  Hao Yan,et al.  Programmable DNA self-assemblies for nanoscale organization of ligands and proteins. , 2005, Nano letters.

[28]  M. Reimold,et al.  Toward replicatable, multifunctional, nanoscaffolded machines. A chemical manifesto , 2003 .

[29]  Russell P. Goodman,et al.  Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication , 2005, Science.

[30]  E. Shapiro,et al.  An autonomous molecular computer for logical control of gene expression , 2004, Nature.

[31]  John H. Reif,et al.  The Design of Autonomous DNA Nanomechanical Devices: Walking and Rolling DNA , 2002, DNA.

[32]  Andrew J Turberfield,et al.  The single-step synthesis of a DNA tetrahedron. , 2004, Chemical communications.

[33]  William M. Shih,et al.  A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron , 2004, Nature.

[34]  C. Niemeyer,et al.  Nanopartikel, Proteine und Nucleinsäuren: Die Biotechnologie begegnet den Materialwissenschaften , 2001 .

[35]  Luc Jaeger,et al.  Controlled spacing of cationic gold nanoparticles by nanocrown RNA. , 2005, Journal of the American Chemical Society.

[36]  F. Simmel,et al.  Using DNA to construct and power a nanoactuator. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  N. Seeman,et al.  Modifying the Surface Features of Two-Dimensional DNA Crystals , 1999 .

[38]  J. Reif,et al.  DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Reif,et al.  Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes , 2000 .

[40]  Masayuki Endo,et al.  Control of a double helix DNA assembly by use of cross-linked oligonucleotides. , 2003, Journal of the American Chemical Society.

[41]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[42]  N. Seeman,et al.  Assembly of Borromean rings from DNA , 1997, Nature.

[43]  Ivo L. Hofacker,et al.  Vienna RNA secondary structure server , 2003, Nucleic Acids Res..

[44]  N. Seeman Construction of three-dimensional stick figures from branched DNA. , 1991, DNA and cell biology.

[45]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[46]  Chunli Bai,et al.  Branched Nanowire Based Guanine Rich Oligonucleotides , 2001, Journal of Biomolecular Structure and Dynamics.

[47]  N. Seeman,et al.  Six-helix bundles designed from DNA. , 2005, Nano letters.

[48]  C R Cantor,et al.  Oligonucleotide-directed self-assembly of proteins: semisynthetic DNA--streptavidin hybrid molecules as connectors for the generation of macroscopic arrays and the construction of supramolecular bioconjugates. , 1994, Nucleic acids research.

[49]  J. Ackermann,et al.  Word Design for Biomolecular Information Processing , 2003 .

[50]  Christof M Niemeyer,et al.  Reversible switching of DNA-gold nanoparticle aggregation. , 2004, Angewandte Chemie.

[51]  P. McEuen,et al.  Controlled assembly of dendrimer-like DNA , 2004, Nature materials.

[52]  R. Pascal,et al.  Synthesis of polyphenylene dendrimers related to "cubic graphite". , 2004, Journal of the American Chemical Society.

[53]  C. Niemeyer,et al.  Self-assembled nanostructures based on DNA: towards the development of nanobiotechnology. , 2000, Current opinion in chemical biology.

[54]  N. Seeman DNA in a material world , 2003, Nature.

[55]  Colin J. Loweth,et al.  DNA ALS GERUST ZUR BILDUNG VON AGGREGATEN AUS GOLD-NANOKRISTALLEN , 1999 .

[56]  M. Brucale,et al.  The dynamic properties of an intramolecular transition from DNA duplex to cytosine-thymine motif triplex. , 2005, Organic & biomolecular chemistry.

[57]  Kurt V Gothelf,et al.  Modular DNA-programmed assembly of linear and branched conjugated nanostructures. , 2004, Journal of the American Chemical Society.

[58]  Anne Condon,et al.  Strand design for biomolecular computation , 2002, Theor. Comput. Sci..

[59]  N. Pierce,et al.  A synthetic DNA walker for molecular transport. , 2004, Journal of the American Chemical Society.

[60]  Yuriy Brun,et al.  DNA triangles and self-assembled hexagonal tilings. , 2004, Journal of the American Chemical Society.

[61]  Friedrich C Simmel,et al.  A DNA-based machine that can cyclically bind and release thrombin. , 2004, Angewandte Chemie.

[62]  Chengde Mao,et al.  Sequence symmetry as a tool for designing DNA nanostructures. , 2005, Angewandte Chemie.

[63]  Eugen Katz,et al.  Integrierte Hybridsysteme aus Nanopartikeln und Biomolekülen: Synthese, Eigenschaften und Anwendungen , 2004 .

[64]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[65]  N. Seeman,et al.  Synthesis from DNA of a molecule with the connectivity of a cube , 1991, Nature.

[66]  J. Reif,et al.  A two-state DNA lattice switched by DNA nanoactuator. , 2003, Angewandte Chemie.

[67]  J. Reif,et al.  DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires , 2003, Science.

[68]  S. Balasubramanian,et al.  A proton-fuelled DNA nanomachine. , 2003, Angewandte Chemie.

[69]  Robert D. Barish,et al.  Three-helix bundle DNA tiles self-assemble into 2D lattice or 1D templates for silver nanowires. , 2005, Nano letters.

[70]  Wolfgang Banzhaf,et al.  Software Tools for DNA Sequence Design , 2003, Genetic Programming and Evolvable Machines.

[71]  Günter von Kiedrowski,et al.  Selbstanordnung von Trisoligonucleotidylen: „Nano‐Acetylen”︁ und „Nano‐Cyclobutadien”︁ , 1999 .

[72]  Wolfgang Bürger,et al.  Kovalente DNA‐Streptavidin‐Konjugate als Bausteine für neuartige biometallische Nanostrukturen , 1998 .

[73]  Axel Ekani-Nkodo,et al.  Joining and scission in the self-assembly of nanotubes from DNA tiles. , 2004, Physical review letters.

[74]  Chad A. Mirkin,et al.  Programmed Materials Synthesis with DNA. , 1999, Chemical reviews.

[75]  E. Braun,et al.  DNA-templated assembly and electrode attachment of a conducting silver wire , 1998, Nature.

[76]  Nadrian C. Seeman Nanostrukturen und Topologien von Nucleinsäuren , 1998 .

[77]  Jean-Louis Mergny,et al.  DNA duplex–quadruplex exchange as the basis for a nanomolecular machine , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[78]  D. Erie,et al.  Self-Assembly of Frayed Wires and Frayed-Wire Networks: Nanoconstruction with Multistranded DNA , 2002 .

[79]  N. Seeman,et al.  DNA-Templated Self-Assembly of Metallic Nanocomponent Arrays on a Surface , 2004 .

[80]  N. Seeman,et al.  Paranemic crossover DNA: a generalized Holliday structure with applications in nanotechnology. , 2004, Journal of the American Chemical Society.

[81]  Ehud Shapiro,et al.  DNA molecule provides a computing machine with both data and fuel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Dan Luo,et al.  Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes , 2005, Nature Biotechnology.

[83]  N. Seeman,et al.  Paranemic cohesion of topologically-closed DNA molecules. , 2002, Journal of the American Chemical Society.

[84]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[85]  N. Seeman Nucleic Acid Nanostructures and Topology. , 1998, Angewandte Chemie.

[86]  E. Winfree,et al.  Algorithmic Self-Assembly of DNA Sierpinski Triangles , 2004, PLoS biology.

[87]  Michael Krueger,et al.  Sequence-Specific Molecular Lithography on Single DNA Molecules , 2002, Science.

[88]  N. Seeman,et al.  Selfassembly of Metallic Nanoparticle Arrays by DNA Scaffolding , 2002 .

[89]  Bernard Yurke,et al.  A DNA-based molecular device switchable between three distinct mechanical states , 2002 .

[90]  K. Mullis,et al.  The Polymerase Chain Reaction (Nobel Lecture) , 1994 .

[91]  Lloyd M. Smith,et al.  DNA computing on surfaces , 2000, Nature.

[92]  N. Seeman,et al.  A nanomechanical device based on the B–Z transition of DNA , 1999, Nature.

[93]  C. Niemeyer REVIEW Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science , 2022 .

[94]  H Wu An improved surface-based method for DNA computation. , 2001, Bio Systems.

[95]  N. Seeman De novo design of sequences for nucleic acid structural engineering. , 1990, Journal of biomolecular structure & dynamics.

[96]  Darko Stefanovic,et al.  A deoxyribozyme-based molecular automaton , 2003, Nature Biotechnology.

[97]  Chengde Mao,et al.  Reprogramming DNA-directed reactions on the basis of a DNA conformational change. , 2004, Journal of the American Chemical Society.

[98]  E. Braun,et al.  DNA-Templated Carbon Nanotube Field-Effect Transistor , 2003, Science.

[99]  Bernard Yurke,et al.  Using DNA to Power Nanostructures , 2003, Genetic Programming and Evolvable Machines.

[100]  Zhaoxiang Deng and,et al.  Molecular Lithography with DNA Nanostructures , 2004 .

[101]  Simona Cocco,et al.  The micromechanics of DNA , 2003 .

[102]  H. Hansma,et al.  Building Programmable Jigsaw Puzzles with RNA , 2004, Science.

[103]  Chengde Mao,et al.  Molecular gears: a pair of DNA circles continuously rolls against each other. , 2004, Journal of the American Chemical Society.

[104]  M. Caruthers,et al.  Gene synthesis machines: DNA chemistry and its uses. , 1985, Science.

[105]  萩谷 昌己,et al.  DNA computing : 8th International Workshop on DNA-Based Computers, DNA8, Sapporo, Japan, June 10-13, 2002 : revised papers , 2003 .

[106]  N. Seeman The design and engineering of nucleic acid nanoscale assemblies. , 1996, Current opinion in structural biology.

[107]  Andreas Reuter,et al.  Eine DNA‐basierte Maschine, die Thrombin abwechselnd binden und wieder freigeben kann , 2004 .

[108]  David R. Liu,et al.  DNA-templated organic synthesis: nature's strategy for controlling chemical reactivity applied to synthetic molecules. , 2004, Angewandte Chemie.

[109]  A Paul Alivisatos,et al.  DNA-Based Assembly of Gold Nanocrystals. , 1999, Angewandte Chemie.

[110]  Masayuki Endo,et al.  DNA tube structures controlled by a four-way-branched DNA connector. , 2005, Angewandte Chemie.

[111]  Max H. Garzon,et al.  Biomolecular computing and programming , 1999, IEEE Trans. Evol. Comput..

[112]  Chengde Mao,et al.  Putting a brake on an autonomous DNA nanomotor. , 2004, Journal of the American Chemical Society.

[113]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[114]  Baoquan Ding,et al.  Pseudohexagonal 2D DNA crystals from double crossover cohesion. , 2004, Journal of the American Chemical Society.

[115]  Hao Yan,et al.  New motifs in DNA nanotechnology , 1998 .

[116]  N. Seeman,et al.  Ligation of DNA Triangles Containing Double Crossover Molecules , 1998 .

[117]  Nadrian C. Seeman,et al.  Short extensions to sticky ends for DNA nanotechnology and DNA-based computation , 1999 .

[118]  Dipankar Sen,et al.  Duplex Pinching: A Structural Switch Suitable for Contractile DNA Nanoconstructions , 2003 .

[119]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[120]  Chengde Mao,et al.  An autonomous DNA nanomotor powered by a DNA enzyme. , 2004, Angewandte Chemie.

[121]  J. Reif,et al.  A unidirectional DNA walker that moves autonomously along a track. , 2004, Angewandte Chemie.

[122]  J. Reif,et al.  Electronic nanostructures templated on self-assembled DNA scaffolds , 2004 .

[123]  Robert M. Dirks,et al.  Paradigms for computational nucleic acid design. , 2004, Nucleic acids research.

[124]  N. Seeman,et al.  Antiparallel DNA Double Crossover Molecules As Components for Nanoconstruction , 1996 .

[125]  N. Seeman DNA nanotechnology: novel DNA constructions. , 1998, Annual review of biophysics and biomolecular structure.

[126]  C. Niemeyer,et al.  Nanomechanische Bauelemente auf DNA‐Basis , 2002 .

[127]  E. Winfree,et al.  Design and characterization of programmable DNA nanotubes. , 2004, Journal of the American Chemical Society.

[128]  Laura F. Landweber,et al.  The past, present and future of molecular computing , 2000, Nature Reviews Molecular Cell Biology.

[129]  H. Haken,et al.  Synergetics , 1988, IEEE Circuits and Devices Magazine.

[130]  C. Niemeyer,et al.  DNA‐Mikroarrays als Decodierungswerkzeuge in der kombinatorischen Chemie und der chemischen Biologie , 2005 .

[131]  Kurt V Gothelf,et al.  A modular approach to DNA-programmed self-assembly of macromolecular nanostructures. , 2005, Chemistry.

[132]  Chad A. Mirkin,et al.  Nanobiotechnology :concepts, applications and perspectives , 2005 .

[133]  N. Seeman,et al.  DNA double-crossover molecules. , 1993, Biochemistry.

[134]  N. Seeman,et al.  A precisely controlled DNA biped walking device , 2004 .

[135]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[136]  Thomas Kraska,et al.  Investigation of the formation of iron nanoparticles from the gas phase by molecular dynamics simulation , 2004 .

[137]  N. Seeman,et al.  Designed Two-Dimensional DNA Holliday Junction Arrays Visualized by Atomic Force Microscopy , 1999 .

[138]  Xiaoyu Li,et al.  DNA‐gestützte organische Synthese: die Strategie der Natur zur Steuerung chemischer Reaktivität übertragen auf synthetische Moleküle , 2004 .

[139]  A. Heeger,et al.  Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. , 2005, Angewandte Chemie.

[140]  J. Reif,et al.  Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[141]  A. Turberfield,et al.  DNA fuel for free-running nanomachines. , 2003, Physical review letters.

[142]  L. McLaughlin,et al.  Four-arm oligonucleotide Ni(II)-cyclam-centered complexes as precursors for the generation of supramolecular periodic assemblies. , 2004, Journal of the American Chemical Society.

[143]  Alessandra Carbone,et al.  Circuits and programmable self-assembling DNA structures , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[144]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[145]  N. Seeman,et al.  Ligation of triangles built from bulged 3-arm DNA branched junctions , 1996 .

[146]  Nadrian C Seeman,et al.  Crystal structure of a continuous three-dimensional DNA lattice. , 2004, Chemistry & biology.

[147]  Scheffler,et al.  Self-Assembly of Trisoligonucleotidyls: The Case for Nano-Acetylene and Nano-Cyclobutadiene. , 1999, Angewandte Chemie.

[148]  Kary B. Mullis Die Polymerase‐Kettenreaktion (Nobel‐Vortrag) , 1994 .

[149]  J. Reif,et al.  Logical computation using algorithmic self-assembly of DNA triple-crossover molecules , 2000, Nature.

[150]  Christof M Niemeyer,et al.  DNA microarrays as decoding tools in combinatorial chemistry and chemical biology. , 2005, Angewandte Chemie.

[151]  Christof M Niemeyer,et al.  Nanomechanical devices based on DNA. , 2002, Angewandte Chemie.

[152]  N. Seeman,et al.  Construction of a DNA-Truncated Octahedron , 1994 .