Automated segmentation of cortical necrosis using awavelet based abnormality detection system

We propose an automated method to segment cortical necrosis from brain FLAIR-MR Images. Cortical necrosis are regions of dead brain tissue in the cortex caused by cerebrovascular disease (CVD). The accurate segmentation of these regions is difficult as their intensity patterns are similar to the adjoining cerebrospinal fluid (CSF). We generate a model of normal variation using MR scans of healthy controls. The model is based on the Jacobians of warps obtained by registering scans of normal subjects to a common coordinate system. For each patient scan a Jacobian is obtained by warping it to the same coordinate system. Large deviations between the model and subject-specific Jacobians are flagged as ‘abnormalities’. Abnormalities are segmented as cortical necrosis if they are in the cortex and have the intensity profile of CSF. We evaluate our method by using a set of 72 healthy subjects to model cortical variation. We use this model to successfully detect and segment cortical necrosis in a set of 37 patients with CVD. A comparison of the results with segmentations from two independent human experts shows that the overlap between our approach and either of the human experts is in the range of the overlap between the two human experts themselves.