Monotonicity and Enclosure Methods for the p-Laplace Equation

We show that the convex hull of a monotone perturbation of a homogeneous background conductivity in the $p$-conductivity equation is determined by knowledge of the nonlinear Dirichlet--Neumann oper...

[1]  Lalita Udpa,et al.  The Monotonicity Imaging Method for PECT , 2015 .

[2]  Gen Nakamura,et al.  Identification of a non-convex obstacle for acoustical scattering , 2007 .

[3]  Antonello Tamburrino,et al.  A new non-iterative inversion method for electrical resistance tomography , 2002 .

[4]  Jenn-Nan Wang,et al.  Reconstruction of Penetrable Obstacles in Acoustic Scattering , 2011, SIAM J. Math. Anal..

[5]  Mourad Sini,et al.  On the reconstruction of interfaces using complex geometrical optics solutions for the acoustic case , 2012 .

[6]  Tommi Brander,et al.  SUPERCONDUCTIVE AND INSULATING INCLUSIONS FOR LINEAR AND NON-LINEAR CONDUCTIVITY EQUATIONS , 2015, 1510.09029.

[7]  Jin Keun Seo,et al.  Exact Shape-Reconstruction by One-Step Linearization in Electrical Impedance Tomography , 2010, SIAM J. Math. Anal..

[8]  Bastian Harrach,et al.  Simultaneous determination of the diffusion and absorption coefficient from boundary data , 2012 .

[9]  Henrik Garde,et al.  Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography , 2015, Numerische Mathematik.

[10]  M. IKEHATA How to draw a picture of an unknown inclusion from boundary measurements. Two mathematical inversion algorithms , 1999 .

[11]  Bastian Harrach,et al.  Unique shape detection in transient eddy current problems , 2013 .

[12]  Mikko Salo,et al.  Inverse problems for $p$-Laplace type equations under monotonicity assumptions , 2016 .

[13]  Antonello Tamburrino,et al.  A Novel Technique for Evaluating the Effective Permittivity of Inhomogeneous Interconnects Based on the Monotonicity Property , 2016, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[14]  Masaru Ikehata,et al.  Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data , 1999 .

[15]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[16]  Bastian von Harrach,et al.  Resolution Guarantees in Electrical Impedance Tomography , 2015, IEEE Transactions on Medical Imaging.

[17]  Tommi Brander,et al.  Enclosure method for the p-Laplace equation , 2014, Inverse Problems.

[18]  C. Kenig,et al.  Limiting Carleman weights and anisotropic inverse problems , 2008, 0803.3508.

[19]  Masaru Ikehata,et al.  RECONSTRUCTION OF THE SHAPE OF THE INCLUSION BY BOUNDARY MEASUREMENTS , 1998 .

[20]  Antonello Tamburrino Monotonicity based imaging methods for elliptic and parabolic inverse problems , 2006 .

[21]  Masaru Ikehata,et al.  On reconstruction in the inverse conductivity problem with one measurement , 2000, 1902.05182.

[22]  Tommi Brander,et al.  Calder\'on's problem for p-Laplace type equations , 2016, 1604.05844.

[23]  Tommi Brander,et al.  Calderón problem for the p-Laplacian: First order derivative of conductivity on the boundary , 2014, 1403.0428.

[24]  Masaru Ikehata,et al.  Reconstruction of obstacle from boundary measurements , 1999 .

[25]  Bastian Gebauer,et al.  Localized potentials in electrical impedance tomography , 2008 .

[26]  Thomas Wolff,et al.  Gap series constructions for the p-Laplacian , 2007 .

[27]  Bastian Harrach,et al.  Enhancing residual-based techniques with shape reconstruction features in electrical impedance tomography , 2015, 1511.07079.

[28]  Bastian Harrach,et al.  Local uniqueness for an inverse boundary value problem with partial data , 2016, 1810.05834.

[29]  Xiao Zhong,et al.  An Inverse Problem for the p-Laplacian: Boundary Determination , 2011, SIAM J. Math. Anal..

[30]  Bastian von Harrach,et al.  Monotonicity-Based Shape Reconstruction in Electrical Impedance Tomography , 2013, SIAM J. Math. Anal..

[31]  Lalita Udpa,et al.  Monotonicity Based Imaging Method in Time Domain Eddy Current Testing , 2016 .

[32]  Gunther Uhlmann,et al.  Inverse problems: seeing the unseen , 2014 .

[33]  B. Harrach,et al.  Combining frequency-difference and ultrasound modulated electrical impedance tomography , 2015, 1810.04392.

[34]  B. Harrach On uniqueness in diffuse optical tomography , 2009 .

[35]  Masaru Ikehata,et al.  Reconstruction of the support function for inclusion from boundary measurements , 2000 .

[36]  Lalita Udpa,et al.  Time domain monotonicity based inversion method for eddy current tomography , 2015, 2015 31st International Review of Progress in Applied Computational Electromagnetics (ACES).