Calculation of Lyapunov exponents in systems with impacts
暂无分享,去创建一个
[1] Andrzej Stefański,et al. Estimation of the largest Lyapunov exponent in systems with impacts , 2000 .
[2] Barbara Blazejczyk-Okolewska. Analysis of an impact damper of vibrations , 2001 .
[3] Karl Popp,et al. Dynamics of oscillators with impact and friction , 1997 .
[4] D. Ruelle,et al. Ergodic theory of chaos and strange attractors , 1985 .
[5] J. Yorke,et al. Chaos: An Introduction to Dynamical Systems , 1997 .
[6] Tomasz Kapitaniak,et al. Estimation of the dominant Lyapunov exponent of non-smooth systems on the basis of maps synchronization , 2003 .
[7] Arne Nordmark,et al. Non-periodic motion caused by grazing incidence in an impact oscillator , 1991 .
[8] A. Lichtenberg,et al. Regular and Chaotic Dynamics , 1992 .
[9] Ray P. S. Han,et al. Chaotic motion of a horizontal impact pair , 1995 .
[10] Mw Hirsch,et al. Chaos In Dynamical Systems , 2016 .
[11] Tomasz Kapitaniak,et al. Practical riddling in mechanical systems , 2000 .
[12] Tomasz Kapitaniak,et al. Co-existing attractors of impact oscillator , 1998 .
[13] V. I. Oseledec. A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .
[14] P. Müller. Calculation of Lyapunov exponents for dynamic systems with discontinuities , 1995 .
[15] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[16] Ugo Galvanetto. Numerical computation of Lyapunov exponents in discontinuous maps implicitly defined , 2000 .
[17] M. Hénon,et al. A two-dimensional mapping with a strange attractor , 1976 .
[18] Iberê L. Caldas,et al. Basins of Attraction and Transient Chaos in a Gear-Rattling Model , 2001 .
[19] H. Schuster. Deterministic chaos: An introduction , 1984 .