Calculation of Lyapunov exponents in systems with impacts

We apply a model based algorithm for the calculation of the spectrum of the Lyapunov exponents of attractors of mechanical systems with impacts. For that, we introduce the transcendental maps that describe solutions of integrable differential equations, between impacts, supplemented by transition conditions at the instants of impacts. We apply this procedure to an impact oscillator and to an impact-pair system (with periodic and chaotic driving). In order to show the method precision, for large parameters range, we calculate Lyapunov exponents to classify attractors observed in bifurcation diagrams. In addition, we characterize the system dynamics by the largest Lyapunov exponent diagram in the parameter space.

[1]  Andrzej Stefański,et al.  Estimation of the largest Lyapunov exponent in systems with impacts , 2000 .

[2]  Barbara Blazejczyk-Okolewska Analysis of an impact damper of vibrations , 2001 .

[3]  Karl Popp,et al.  Dynamics of oscillators with impact and friction , 1997 .

[4]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[5]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[6]  Tomasz Kapitaniak,et al.  Estimation of the dominant Lyapunov exponent of non-smooth systems on the basis of maps synchronization , 2003 .

[7]  Arne Nordmark,et al.  Non-periodic motion caused by grazing incidence in an impact oscillator , 1991 .

[8]  A. Lichtenberg,et al.  Regular and Chaotic Dynamics , 1992 .

[9]  Ray P. S. Han,et al.  Chaotic motion of a horizontal impact pair , 1995 .

[10]  Mw Hirsch,et al.  Chaos In Dynamical Systems , 2016 .

[11]  Tomasz Kapitaniak,et al.  Practical riddling in mechanical systems , 2000 .

[12]  Tomasz Kapitaniak,et al.  Co-existing attractors of impact oscillator , 1998 .

[13]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[14]  P. Müller Calculation of Lyapunov exponents for dynamic systems with discontinuities , 1995 .

[15]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[16]  Ugo Galvanetto Numerical computation of Lyapunov exponents in discontinuous maps implicitly defined , 2000 .

[17]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[18]  Iberê L. Caldas,et al.  Basins of Attraction and Transient Chaos in a Gear-Rattling Model , 2001 .

[19]  H. Schuster Deterministic chaos: An introduction , 1984 .