혼합 가우시안 모델과 민쉬프트 필터를 이용한 깊이 맵 부호화 전처리 기법
暂无分享,去创建一个
본 논문에서는 깊이 맵(depth map)에 대한 효율적인 부호화를 위하여 전처리 기법을 제안한다. 현재 3차원 비디오 부호화(3D video coding : 3DVC)에 대한 표준화가 진행 중에 있지만 아직 깊이 맵의 부호화 방법에 대한 표준은 확정되지 않은 상태이다. 제안하는 기법에서는 먼저 입력된 깊이 맵의 히스토그램 분포를 가우시안 혼합모델(Gaussian mixture model : GMM) 기반의 EM(expectation maximization) 군집화 기법을 이용하여 분리한다. 분리된 히스토그램을 기반으로 깊이 맵을 여러 개의 레이어로 분리하게 된다. 분리된 각각의 레이어에서 배경과 객체의 포함 여부에 따라 다른 조건의 민쉬프트 필터(mean shift filter)를 적용한다. 결과적으로 영상내의 각 영역 경계는 최대한 살리면서 영역내의 화소 값에 대해서는 평균 연산을 취하여 부호화시 효율을 극대화 하고자 하였다. 다양한 실험영상에 대하여 제안한 기법을 적용한 깊이 맵을 부호화하여 비트율(bit rate)이 감소하고 부호화 시간도 다소 줄어드는 것을 확인 할 수 있었다.