Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites

Abstract The dilute, self-consistent, Mori-Tanaka and differential micromechanics theories are extended to consider the coupled electroelastic behavior of piezoelectric composite materials. The application of each theory is based on Deeg's (1980, unpublished) rigorous three-dimensional electroelastic solution of an ellipsoidal inclusion in an infinite piezoelectric medium. Each micro-mechanics theory is implemented through a matrix formulation in which the effective electroelastic moduli are conveniently represented by a 9 × 9 matrix. As in the corresponding uncoupled elastic and electric behavior, the dilute and Mori-Tanaka schemes return explicit estimates for the effective electroelastic moduli. The self consistent method, however, returns an implicit nonlinear algebraic matrix equation for the effective electroelastic moduli. The differential scheme formally results in a set of 81 coupled nonlinear ordinary differential equations for the effective electroelastic moduli. In general, recourse to a numerical scheme is required for the self-consistent and differential theories. Numerical results are presented to illustrate the performance of each model for some typical composite microstructures and the models are compared in light of existing experimental data.

[1]  Dimitris C. Lagoudas,et al.  On the numerical evaluation of Eshelby's tensor and its application to elastoplastic fibrous composites , 1990 .

[2]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[4]  E. Fukada,et al.  Electromechanical Properties in the Composites of Epoxy Resin and PZT Ceramics , 1976 .

[5]  G. Weng THE THEORETICAL CONNECTION BETWEEN MORI-TANAKA'S THEORY AND THE HASHIN-SHTRIKMAN-WALPOLE BOUNDS , 1990 .

[6]  B. Auld,et al.  Modeling 1-3 composite piezoelectrics: thickness-mode oscillations , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[7]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[8]  George J. Weng,et al.  Explicit evaluation of Willis' bounds with ellipsoidal inclusions , 1992 .

[9]  J. Aboudi Mechanics of composite materials - A unified micromechanical approach , 1991 .

[10]  W. Deeg,et al.  The analysis of dislocation, crack, and inclusion problems in piezoelectric solids , 1980 .

[11]  Zhou Shu-ang A material multipole theory of elastic dielectric composites , 1991 .

[12]  A. Grekov,et al.  Effective properties of a transversely isotropic piezocomposite with cylindrical inclusions , 1989 .

[13]  B. Budiansky On the elastic moduli of some heterogeneous materials , 1965 .

[14]  M. Taya,et al.  Metal Matrix Composites: Thermomechanical Behavior , 1989 .

[15]  R. Mclaughlin A study of the differential scheme for composite materials , 1977 .

[16]  Tungyang Chen,et al.  On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media , 1991 .

[17]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[18]  A. Grekov,et al.  Anomalous behavior of the two-phase lamellar piezoelectric texture , 1987 .

[19]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[20]  J. Unsworth,et al.  Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications , 1989 .

[21]  T. Ikeda Fundamentals of piezoelectricity , 1990 .

[22]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[23]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[24]  Don Berlincourt,et al.  Piezoelectric Crystals and Ceramics , 1971 .

[25]  Wang Biao,et al.  Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material , 1992 .

[26]  D. M. Barnett,et al.  Dislocations and line charges in anisotropic piezoelectric insulators , 1975 .

[27]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .

[28]  Warren P. Mason,et al.  Ultrasonic Transducer Materials , 1971 .

[29]  A. Norris A differential scheme for the effective moduli of composites , 1985 .

[30]  L. E. Cross,et al.  Connectivity and piezoelectric-pyroelectric composites , 1978 .

[31]  M. Ferrari Asymmetry and the high concentration limit of the Mori-Tanaka effective medium theory , 1991 .

[32]  H. Banno,et al.  Recent developments of piezoelectric ceramic products and composites of synthetic rubber and piezoelectric ceramic particles , 1983 .

[33]  Hatta Hiroshi,et al.  Equivalent inclusion method for steady state heat conduction in composites , 1986 .

[34]  E. Kröner Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .

[35]  Andrew N. Norris,et al.  The mechanical properties of platelet reinforced composites , 1990 .