Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites
暂无分享,去创建一个
[1] Dimitris C. Lagoudas,et al. On the numerical evaluation of Eshelby's tensor and its application to elastoplastic fibrous composites , 1990 .
[2] J. D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[3] K. Tanaka,et al. Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .
[4] E. Fukada,et al. Electromechanical Properties in the Composites of Epoxy Resin and PZT Ceramics , 1976 .
[5] G. Weng. THE THEORETICAL CONNECTION BETWEEN MORI-TANAKA'S THEORY AND THE HASHIN-SHTRIKMAN-WALPOLE BOUNDS , 1990 .
[6] B. Auld,et al. Modeling 1-3 composite piezoelectrics: thickness-mode oscillations , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[7] D. A. G. Bruggeman. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .
[8] George J. Weng,et al. Explicit evaluation of Willis' bounds with ellipsoidal inclusions , 1992 .
[9] J. Aboudi. Mechanics of composite materials - A unified micromechanical approach , 1991 .
[10] W. Deeg,et al. The analysis of dislocation, crack, and inclusion problems in piezoelectric solids , 1980 .
[11] Zhou Shu-ang. A material multipole theory of elastic dielectric composites , 1991 .
[12] A. Grekov,et al. Effective properties of a transversely isotropic piezocomposite with cylindrical inclusions , 1989 .
[13] B. Budiansky. On the elastic moduli of some heterogeneous materials , 1965 .
[14] M. Taya,et al. Metal Matrix Composites: Thermomechanical Behavior , 1989 .
[15] R. Mclaughlin. A study of the differential scheme for composite materials , 1977 .
[16] Tungyang Chen,et al. On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media , 1991 .
[17] A. Reuss,et al. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .
[18] A. Grekov,et al. Anomalous behavior of the two-phase lamellar piezoelectric texture , 1987 .
[19] Y. Benveniste,et al. A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .
[20] J. Unsworth,et al. Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications , 1989 .
[21] T. Ikeda. Fundamentals of piezoelectricity , 1990 .
[22] Toshio Mura,et al. Micromechanics of defects in solids , 1982 .
[23] R. Hill. A self-consistent mechanics of composite materials , 1965 .
[24] Don Berlincourt,et al. Piezoelectric Crystals and Ceramics , 1971 .
[25] Wang Biao,et al. Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material , 1992 .
[26] D. M. Barnett,et al. Dislocations and line charges in anisotropic piezoelectric insulators , 1975 .
[27] W. Voigt. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .
[28] Warren P. Mason,et al. Ultrasonic Transducer Materials , 1971 .
[29] A. Norris. A differential scheme for the effective moduli of composites , 1985 .
[30] L. E. Cross,et al. Connectivity and piezoelectric-pyroelectric composites , 1978 .
[31] M. Ferrari. Asymmetry and the high concentration limit of the Mori-Tanaka effective medium theory , 1991 .
[32] H. Banno,et al. Recent developments of piezoelectric ceramic products and composites of synthetic rubber and piezoelectric ceramic particles , 1983 .
[33] Hatta Hiroshi,et al. Equivalent inclusion method for steady state heat conduction in composites , 1986 .
[34] E. Kröner. Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .
[35] Andrew N. Norris,et al. The mechanical properties of platelet reinforced composites , 1990 .