Numerical simulations of concrete flow: A benchmark comparison

First, we define in this paper two benchmark flows readily usable by anyone calibrating a numerical tool for concrete flow prediction. Such benchmark flows shall allow anyone to check the validity of their computational tools no matter the numerical methods and parameters they choose. Second, we compare numerical predictions of the concrete sample final shape for these two benchmark flows obtained by various research teams around the world using various numerical techniques. Our results show that all numerical techniques compared here give very similar results suggesting that numerical simulations of concrete filling ability when neglecting any potential components segregation have reached a technology readiness level bringing them closer to industrial practice.

[1]  Cyrus K. Aidun,et al.  Lattice-Boltzmann Method for Complex Flows , 2010 .

[2]  U. Rüde,et al.  Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming , 2005 .

[3]  Jon Elvar Wallevik,et al.  Rheological properties of cement paste: Thixotropic behavior and structural breakdown , 2009 .

[4]  Zhenhua Chai,et al.  Multiple-relaxation-time lattice Boltzmann model for generalized Newtonian fluid flows , 2011 .

[5]  Nicolas Roussel,et al.  Steady and transient flow behaviour of fresh cement pastes , 2005 .

[6]  Frédéric Dufour,et al.  Computational modeling of concrete flow: General overview , 2007 .

[7]  N. Roussel,et al.  Correlation between L-box test and rheological parameters of a homogeneous yield stress fluid , 2006 .

[8]  Jonas Latt,et al.  Hydrodynamic limit of lattice Boltzmann equations , 2007 .

[9]  Morton M. Denn,et al.  Flow of bingham fluids in complex geometries , 1984 .

[10]  U. Perego,et al.  Simulation of the flow of fresh cement suspensions by a Lagrangian finite element approach , 2010 .

[11]  T. Papanastasiou Flows of Materials with Yield , 1987 .

[12]  David R. Owen,et al.  Numerical rheometry of bulk materials using a power law fluid and the lattice Boltzmann method , 2011 .

[13]  Jesper Henri Hattel,et al.  Flow induced particle migration in fresh concrete: Theoretical frame, numerical simulations and experimental results on model fluids , 2012 .

[14]  Nicolas Roussel,et al.  Passing Ability of Fresh Concrete: A Probabilistic Approach , 2009 .

[15]  Mitsuhiro Ohta,et al.  Lattice Boltzmann simulations of viscoplastic fluid flows through complex flow channels , 2011 .

[16]  Abdulmajeed A. Mohamad,et al.  A critical evaluation of force term in lattice Boltzmann method, natural convection problem , 2010 .

[17]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[18]  Michael F. Petrou,et al.  Influence of Mortar Rheology on Aggregate Settlement , 2000 .

[19]  Nicolas Roussel,et al.  Correlation between Yield Stress and Slump: Comparison between Numerical Simulations and Concrete Rheometers Results , 2005 .

[20]  Knut Krenzer,et al.  Simulation of fresh concrete flow using Discrete Element Method (DEM): theory and applications , 2014 .

[21]  Nicolas Roussel,et al.  The LCPC BOX: a cheap and simple technique for yield stress measurements of SCC , 2007 .

[22]  Nicolas Roussel,et al.  Rheology of fresh concrete: from measurements to predictions of casting processes , 2007 .

[23]  Nicolas Roussel,et al.  “Fifty-cent rheometer” for yield stress measurements: From slump to spreading flow , 2005 .

[24]  Viktor Mechtcherine,et al.  Simulating the behaviour of fresh concrete with the Distinct Element Method – Deriving model parameters related to the yield stress , 2015 .

[25]  Surendra P. Shah,et al.  New Methodology for Designing Self-Compacting Concrete , 2001 .

[26]  Michael F. Petrou,et al.  A unique experimental method for monitoring aggregate settlement in concrete , 2000 .

[27]  Nicolas Roussel,et al.  A Theoretical Frame to Study Stability of Fresh Concrete , 2005 .

[28]  A. Vikhansky,et al.  Lattice-Boltzmann method for yield-stress liquids , 2008 .

[29]  Wei Shyy,et al.  Force evaluation in the lattice Boltzmann method involving curved geometry. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Roger I. Tanner,et al.  Rheology : an historical perspective , 1998 .

[31]  Hans Petter Langtangen,et al.  Computational Partial Differential Equations - Numerical Methods and Diffpack Programming , 1999, Lecture Notes in Computational Science and Engineering.

[32]  Massimiliano Cremonesi,et al.  A Lagrangian finite element approach for the analysis of fluid–structure interaction problems , 2010 .

[33]  A. Louisa,et al.  コロイド混合体における有効力 空乏引力から集積斥力へ | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2002 .

[34]  Nicolas Roussel,et al.  From mini-cone test to Abrams cone test: measurement of cement-based materials yield stress using slump tests , 2005 .

[35]  Viktor Mechtcherine,et al.  Developing a Discrete Element Model for simulating fresh concrete: Experimental investigation and modelling of interactions between discrete aggregate particles with fine mortar between them , 2013 .

[36]  Roger I. Tanner,et al.  Numerical study of the Bingham squeeze film problem , 1984 .

[37]  Hiroshi Mori,et al.  Simulation methods for Fluidity of fresh concrete. , 1992 .

[38]  Nicolas Roussel,et al.  A thixotropy model for fresh fluid concretes: Theory, validation and applications , 2006 .

[39]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .