Identification of Manning's Roughness Coefficients in Shallow Water Flows

A numerical method based on optimal control theories for identifying Manning's roughness coefficients ~Manning's n! in modeling of shallow water flows is presented. The coefficients are difficult to be determined especially when the spatial variation is significant, and are usually estimated empirically. The present methodology is applied to determine the optimal values of the spatially distributed parameters, which give least overall discrepancies between simulations and measurements. Through a series of systematic studies to identify the n values in both a hypothetical open channel and a natural stream stretch, several identification procedures based on unconstrained and constrained minimizations are analyzed. It is found that the limited-memory quasi-Newton method has the advan- tages of higher rate of convergence, numerical stability and computational efficiency. Although the identification of Manning'sn is chosen as an example, the identification methods can be applied to numerical simulations of various flow problems.

[1]  J. Whitaker,et al.  An Adjoint Sensitivity Study of Blocking in a Two-Layer Isentropic Model , 1993 .

[2]  Yafei Jia,et al.  Numerical Model for Channel Flow and Morphological Change Studies , 1999 .

[3]  A. M. Wasantha Lal,et al.  Calibration of Riverbed Roughness , 1995 .

[4]  Remarks on the algorithm of sakawa for optimal control problems , 1998 .

[5]  Ehab A. Meselhe,et al.  ESTIMATION OF ROUGHNESS PROFILE IN TRAPEZOIDAL OPEN CHANNELS. TECHNICAL NOTE , 1999 .

[6]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[7]  R. Fletcher Practical Methods of Optimization , 1988 .

[8]  W. Yeh,et al.  Identification of parameters in unsteady open channel flows , 1972 .

[9]  Y. Sakawa,et al.  On global convergence of an algorithm for optimal control , 1980 .

[10]  G. Chavent Identification of functional parameters in partial differential equations , 1974 .

[11]  Stephen J. Wright,et al.  Optimization Software Guide , 1987 .

[12]  Rahman Khatibi,et al.  Identification Problem of Open-Channel Friction Parameters , 1997 .

[13]  Wolfgang Kinzelbach,et al.  Flood discharge prediction using two-dimensional inverse modeling , 2002 .

[14]  Claude Lemaréchal,et al.  Some numerical experiments with variable-storage quasi-Newton algorithms , 1989, Math. Program..

[15]  Zhi Wang,et al.  A truncated Newton optimization algorithm in meteorology applications with analytic Hessian/vector products , 1995, Comput. Optim. Appl..

[16]  Philip E. Gill,et al.  Practical optimization , 1981 .

[17]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[18]  Ionel M. Navon,et al.  Second-Order Information in Data Assimilation* , 2002 .

[19]  William W.-G. Yeh,et al.  Variational sensitivity analysis, data requirements, and parameter identification in a leaky aquifer system , 1990 .

[20]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[21]  Michael Piasecki,et al.  Control of Contaminant Releases in Rivers. I: Adjoint Sensitivity Analysis , 1997 .

[22]  A. Bennett,et al.  Open Ocean Modeling as an Inverse Problem: Tidal Theory , 1982 .

[23]  Ionel Michael Navon,et al.  Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography , 1998 .

[24]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[25]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[26]  Ionel M. Navon,et al.  An Optimal Nudging Data Assimilation Scheme Using Parameter Estimation , 1992 .

[27]  François-Xavier Le Dimet,et al.  Numerical Experience with Limited-Memory Quasi-Newton and Truncated Newton Methods , 1993, SIAM J. Optim..

[28]  W. Yeh,et al.  Identification of multiple reach channel parameters , 1973 .

[29]  R. W. Lardner,et al.  On the estimation of parameters of hydraulic models by assimilation of periodic tidal data , 1991 .

[30]  Bithin Datta,et al.  OPTIMAL ESTIMATION OF ROUGHNESS IN OPEN-CHANNEL FLOWS. TECHNICAL NOTE , 2000 .

[31]  D. Cacuci Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis approach , 1981 .

[32]  M. Ghil,et al.  Data assimilation in meteorology and oceanography , 1991 .

[33]  Yafei Jia,et al.  Validation and Application of a 2D Model to Channels with Complex Geometry , 2002, Int. J. Comput. Eng. Sci..

[34]  D. Cacuci Sensitivity theory for nonlinear systems. II. Extensions to additional classes of responses , 1981 .

[35]  R. Salmon,et al.  A variational method for inverting hydrographic data , 1986 .

[36]  I. M. Navon,et al.  Impact of Parameter Estimation on the Performance of the FSU Global Spectral Model Using Its Full-Physics Adjoint , 1999 .

[37]  W. Yeh Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem , 1986 .

[38]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.