BaTiO3-Based Multilayers with Outstanding Energy Storage Performance for High Temperature Capacitor Applications

With the ultrahigh power density and fast charge–discharge capability, a dielectric capacitor is an important way to meet the fast increase in the demand for an energy storage system such as pulsed...

[1]  Jinglei Li,et al.  Energy storage BaZr0.2Ti0.8O3 bilayer relaxor ferroelectric ceramic thick films with high discharging efficiency and fatigue resistance , 2019, Journal of Alloys and Compounds.

[2]  I. Reaney,et al.  BaTiO3–Bi(Li0.5Ta0.5)O3, Lead-Free Ceramics, and Multilayers with High Energy Storage Density and Efficiency , 2018, ACS Applied Energy Materials.

[3]  Ge Wang,et al.  High Energy Storage Density and Large Strain in Bi(Zn2/3Nb1/3)O3-Doped BiFeO3–BaTiO3 Ceramics , 2018, ACS Applied Energy Materials.

[4]  Haian Xie,et al.  Flexible Regenerated Cellulose/Boron Nitride Nanosheet High-Temperature Dielectric Nanocomposite Films with High Energy Density and Breakdown Strength , 2018 .

[5]  Yongfei Cui,et al.  High Energy Storage Density and Optical Transparency of Microwave Sintered Homogeneous (Na0.5Bi0.5)(1–x)BaxTi(1–y)SnyO3 Ceramics , 2018 .

[6]  Y. Wan,et al.  Enhanced energy storage properties of NaNbO3 and SrZrO3 modified Bi0.5Na0.5TiO3 based ceramics , 2017 .

[7]  Fei Yan,et al.  Novel Strontium Titanate-Based Lead-Free Ceramics for High-Energy Storage Applications , 2017 .

[8]  Jihua Zhang,et al.  Effect of BiMO3 (M=Al, In, Y, Sm, Nd, and La) doping on the dielectric properties of BaTiO3 ceramics , 2017 .

[9]  Fei Yan,et al.  High energy storage density over a broad temperature range in sodium bismuth titanate-based lead-free ceramics , 2017, Scientific Reports.

[10]  X. Dong,et al.  High-energy storage performance in lead-free (1-x)BaTiO3-xBi(Zn0.5Ti0.5)O3 relaxor ceramics for temperature stability applications , 2017 .

[11]  Fei Yan,et al.  Lead-free BaTiO3-Bi0.5Na0.5TiO3-Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage , 2017 .

[12]  Ming Wu,et al.  Large Energy Density, Excellent Thermal Stability, and High Cycling Endurance of Lead-Free BaZr0.2Ti0.8O3 Film Capacitors. , 2017, ACS applied materials & interfaces.

[13]  J. Zhai,et al.  Ultrafast Discharge and High-Energy-Density of Polymer Nanocomposites Achieved via Optimizing the Structure Design of Barium Titanates , 2017 .

[14]  Wen-Bo Li,et al.  Enhanced energy storage density by inducing defect dipoles in lead free relaxor ferroelectric BaTiO3-based ceramics , 2017 .

[15]  Longtu Li,et al.  Energy storage properties of ultra fine-grained Ba0.4Sr0.6TiO3-based ceramics sintered at low temperature , 2017 .

[16]  Longtu Li,et al.  Core-shell BaTiO3@BiScO3 particles for local graded dielectric ceramics with enhanced temperature stability and energy storage capability , 2016 .

[17]  Fei Li,et al.  Structure and dielectric properties of Nd(Zn1/2Ti1/2)O3 – BaTiO3 ceramics for energy storage applications , 2016 .

[18]  Xin Zhang,et al.  Achieving High Energy Density in PVDF-Based Polymer Blends: Suppression of Early Polarization Saturation and Enhancement of Breakdown Strength. , 2016, ACS applied materials & interfaces.

[19]  J. Zha,et al.  1D/2D Carbon Nanomaterial-Polymer Dielectric Composites with High Permittivity for Power Energy Storage Applications. , 2016, Small.

[20]  Qinghua Zhang,et al.  Giant Energy Density and Improved Discharge Efficiency of Solution‐Processed Polymer Nanocomposites for Dielectric Energy Storage , 2016, Advanced materials.

[21]  Pan Chen,et al.  Improvement of dielectric and energy storage properties in Bi(Mg1/2Ti1/2)O3-modified (Na1/2Bi1/2)0.92Ba0.08TiO3 ceramics , 2016 .

[22]  Xiaoyong Wei,et al.  Dielectric and temperature stable energy storage properties of 0.88BaTiO3–0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics , 2015 .

[23]  T. Jackson,et al.  Flexible high-temperature dielectric materials from polymer nanocomposites , 2015, Nature.

[24]  X. Chen,et al.  Enhanced energy storage density of Ba0.4Sr0.6TiO3–MgO composite prepared by spark plasma sintering , 2015 .

[25]  Thomas Mikolajick,et al.  Ferroelectricity and Antiferroelectricity of Doped Thin HfO2‐Based Films , 2015, Advanced materials.

[26]  Xiaoyong Wei,et al.  Relaxor Ferroelectric BaTiO3–Bi(Mg2/3Nb1/3)O3 Ceramics for Energy Storage Application , 2015 .

[27]  L. Luo,et al.  Energy-storage properties of (1−x)Bi0.47Na0.47Ba0.06TiO3–xKNbO3 lead-free ceramics , 2014 .

[28]  L. Luo,et al.  Energy storage properties of (1 − x)(Bi0.5Na0.5)TiO3–xKNbO3 lead-free ceramics , 2014, Journal of Materials Science.

[29]  Haixiong Tang,et al.  Synthesis of High Aspect Ratio BaTiO3 Nanowires for High Energy Density Nanocomposite Capacitors , 2013 .

[30]  Haixiong Tang,et al.  Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires. , 2013, Nano letters.

[31]  Genshui Wang,et al.  c/a Ratio‐Dependent Energy‐Storage Density in (0.9−x)Bi0.5Na0.5TiO3–xBaTiO3–0.1K0.5Na0.5NbO3 Ceramics , 2011 .

[32]  S. Trolier-McKinstry,et al.  High‐Energy Density Capacitors Utilizing 0.7 BaTiO3–0.3 BiScO3 Ceramics , 2009 .

[33]  Xin Zhou,et al.  A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed , 2006, Science.

[34]  F. Xia,et al.  An all-organic composite actuator material with a high dielectric constant , 2002, Nature.

[35]  R. D. Shannon Dielectric polarizabilities of ions in oxides and fluorides , 1993 .

[36]  Gordon R. Love,et al.  Energy Storage in Ceramic Dielectrics , 1990 .