The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella Typhimurium.

[1]  P. Bastiaens,et al.  Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. , 2012, Molecular cell.

[2]  H. Serve,et al.  Ubiquitination and selective autophagy , 2012, Cell Death and Differentiation.

[3]  S. Winfree,et al.  The Bimodal Lifestyle of Intracellular Salmonella in Epithelial Cells: Replication in the Cytosol Obscures Defects in Vacuolar Replication , 2012, PloS one.

[4]  F. Baas,et al.  A frameshift mutation in LRSAM1 is responsible for a dominant hereditary polyneuropathy. , 2012, Human molecular genetics.

[5]  F. Randow,et al.  Galectin-8 targets damaged vesicles for autophagy to defend cells against bacterial invasion , 2011, Nature.

[6]  R. L. La Ragione,et al.  Differences in Salmonella enterica serovar Typhimurium strain invasiveness are associated with heterogeneity in SPI-1 gene expression , 2011, Microbiology.

[7]  D. Geschwind,et al.  Gene expression profiling of R6/2 transgenic mice with different CAG repeat lengths reveals genes associated with disease onset and progression in Huntington's disease , 2011, Neurobiology of Disease.

[8]  P. Kim,et al.  The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway , 2011, Autophagy.

[9]  C. Zimmer,et al.  Entrapment of intracytosolic bacteria by septin cage-like structures. , 2010, Cell host & microbe.

[10]  S. Grinstein,et al.  Sorting nexin 3 (SNX3) is a component of a tubular endosomal network induced by Salmonella and involved in maturation of the Salmonella‐containing vacuole , 2010, Cellular microbiology.

[11]  D. Klionsky,et al.  A diacylglycerol-dependent signaling pathway contributes to regulation of antibacterial autophagy. , 2010, Cell host & microbe.

[12]  T. Benstead,et al.  Mutation in the Gene Encoding Ubiquitin Ligase LRSAM1 in Patients with Charcot-Marie-Tooth Disease , 2010, PLoS genetics.

[13]  A. Cuervo,et al.  Autophagy gone awry in neurodegenerative diseases , 2010, Nature Neuroscience.

[14]  R. Xavier,et al.  Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity , 2010, Proceedings of the National Academy of Sciences.

[15]  Fabienne C. Fiesel,et al.  PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 , 2010, Nature Cell Biology.

[16]  Sofia N. Mochegova,et al.  Listeriolysin O Is Necessary and Sufficient to Induce Autophagy during Listeria monocytogenes Infection , 2010, PloS one.

[17]  R. Xavier,et al.  Crohn's disease‐associated adherent‐invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly , 2010, Cellular microbiology.

[18]  S. Bloor,et al.  The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria , 2009, Nature Immunology.

[19]  Michael Wasnick,et al.  A genome-wide in vitro bacterial-infection screen reveals human variation in the host response associated with inflammatory disease. , 2009, American journal of human genetics.

[20]  R. Deshaies,et al.  RING domain E3 ubiquitin ligases. , 2009, Annual review of biochemistry.

[21]  M. Daly,et al.  A Novel Hybrid Yeast-Human Network Analysis Reveals an Essential Role for FNBP1L in Antibacterial Autophagy 1 , 2009, The Journal of Immunology.

[22]  Sarah L. Brown,et al.  A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells , 2008, Nature.

[23]  M. Daly,et al.  Impaired Autophagy of an Intracellular Pathogen Induced by a Crohn's Disease Associated ATG16L1 Variant , 2008, PloS one.

[24]  J. C. Love,et al.  Tubulation of Class II MHC Compartments Is Microtubule Dependent and Involves Multiple Endolysosomal Membrane Proteins in Primary Dendritic Cells1 , 2007, The Journal of Immunology.

[25]  Judy H Cho,et al.  Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis , 2007, Nature Genetics.

[26]  A. Barabasi,et al.  A Protein–Protein Interaction Network for Human Inherited Ataxias and Disorders of Purkinje Cell Degeneration , 2006, Cell.

[27]  Malina A. Bakowski,et al.  Autophagy Controls Salmonella Infection in Response to Damage to the Salmonella-containing Vacuole* , 2006, Journal of Biological Chemistry.

[28]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[29]  H. Lehrach,et al.  A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome , 2005, Cell.

[30]  M. Scidmore,et al.  Interaction of the Salmonella-containing Vacuole with the Endocytic Recycling System* , 2005, Journal of Biological Chemistry.

[31]  V. Markovtsov,et al.  Critical role of the ubiquitin ligase activity of UHRF1, a nuclear RING finger protein, in tumor cell growth. , 2005, Molecular biology of the cell.

[32]  Hiroshi Sagara,et al.  Escape of Intracellular Shigella from Autophagy , 2005, Science.

[33]  I. Amit,et al.  Tal, a Tsg101-specific E3 ubiquitin ligase, regulates receptor endocytosis and retrovirus budding. , 2004, Genes & development.

[34]  Lei Yan,et al.  RIFLE: A novel ring zinc finger‐leucine‐rich repeat containing protein, regulates select cell adhesion molecules in PC12 cells , 2003, Journal of cellular biochemistry.