Functionalized graphene sheet colloids for enhanced fuel/propellant combustion.

We have compared the combustion of the monopropellant nitromethane with that of nitromethane containing colloidal particles of functionalized graphene sheets or metal hydroxides. The linear steady-state burning rates of the monopropellant and colloidal suspensions were determined at room temperature, under a range of pressures (3.35-14.4 MPa) using argon as a pressurizing fluid. The ignition temperatures were lowered and burning rates increased for the colloidal suspensions compared to those of the liquid monopropellant alone, with the graphene sheet suspension having significantly greater burning rates (i.e., greater than 175%). The relative change in burning rate from neat nitromethane increased with increasing concentrations of fuel additives and decreased with increasing pressure until at high pressures no enhancement was found.

[1]  B. H. Weiller,et al.  Practical chemical sensors from chemically derived graphene. , 2009, ACS nano.

[2]  G. R. Astbury A review of the properties and hazards of some alternative fuels , 2008 .

[3]  R. Yetter,et al.  Registered in England and Wales Registered Number : 1072954 Registered , 2009 .

[4]  L. Brinson,et al.  Functionalized graphene sheets for polymer nanocomposites. , 2008, Nature nanotechnology.

[5]  Wenhua Yu,et al.  Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements , 2008 .

[6]  Himanshu Tyagi,et al.  Increased hot-plate ignition probability for nanoparticle-laden diesel fuel. , 2008, Nano letters.

[7]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[8]  B. Stanmore,et al.  Oxidation of carbon by NOx, with particular reference to NO2 and N2O , 2008 .

[9]  Wenhua Yu,et al.  Nanofluids: Science and Technology , 2007 .

[10]  Curtis E. Johnson,et al.  Characterization of Nanometer- to Micron-Sized Aluminum Powders: Size Distribution from Thermogravimetric Analysis , 2007 .

[11]  S. Stankovich,et al.  Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide , 2007 .

[12]  R. Car,et al.  Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite , 2007 .

[13]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[14]  J. R. Engel,et al.  Soluble nano-catalysts for high performance fuels , 2006 .

[15]  M. Ford,et al.  Investigation of Ignition Delay with DMAZ Fuel and MON Oxidiser , 2006 .

[16]  Juhun Song,et al.  The role of fuel-borne catalyst in diesel particulate oxidation behavior , 2006 .

[17]  Roberto Car,et al.  Functionalized single graphene sheets derived from splitting graphite oxide. , 2006, The journal of physical chemistry. B.

[18]  K. Kuo,et al.  Characteri stics of Nitromethane for Propulsion Applications , 2006 .

[19]  Nicolas Pillet,et al.  Influence of the fuel on the thermal and catalytic decompositions of ionic liquid monopropellants , 2005 .

[20]  S. Phillpot,et al.  THERMAL TRANSPORT IN NANOFLUIDS1 , 2004 .

[21]  C. Muraleedharan,et al.  Use of vegetable oils as I.C. engine fuels—A review , 2004 .

[22]  T. Edwards Liquid Fuels and Propellants for Aerospace Propulsion: 1903-2003 , 2003 .

[23]  Kenneth K. Kuo,et al.  Performance comparison of HTPB-based solid fuels containing nano-sized energetic powder in a cylindrical hybrid rocket motor , 2002 .

[24]  Tim Edwards,et al.  Advanced aviation fuels : a look ahead via a historical perspective , 2001 .

[25]  David Moncrieff,et al.  Standard Enthalpies of Formation of Fullerenes and Their Dependence on Structural Motifs , 2000 .

[26]  J. M. Valentine,et al.  Emissions Reduction and Improved Fuel Economy Performance from a Bimetallic Platinum/Cerium Diesel Fuel Additive at Ultra-Low Dose Rates , 2000 .

[27]  N. Eisenreich,et al.  Modelling Nitromethane Combustion , 1999 .

[28]  Jacek Klinowski,et al.  Structure of Graphite Oxide Revisited , 1998 .

[29]  Eric M. Suuberg,et al.  A review of the kinetics of the nitric oxide-carbon reaction , 1997 .

[30]  C. Melius Thermochemistry and Reaction Mechanisms of Nitromethane Ignition , 1995 .

[31]  J. B. Moss Rocket Propulsion Elements: an Introduction to the Engineering of Rockets — Sixth edition, G. P. Sutton John Wiley & Sons, Baffins Lane Chichester, P019 WD. 1992. 636pp. Illustrated. £56. , 1992, The Aeronautical Journal.

[32]  E. Oran,et al.  A mechanism for ignition of high-temperature gaseous nitromethane—The key role of the nitro group in chemical explosives☆ , 1985 .

[33]  B. I. Davis,et al.  Uniformity of Al2O3‐ZrO2 Composites by Colloidal Filtration , 1983 .

[34]  B. I. Davis,et al.  Processing‐Related Fracture Origins: III, Differential Sintering of ZrO2 Agglomerates in Al2O3/ZrO2 Composite , 1983 .

[35]  J. Benziger Decomposition of Nitromethane over NiO and Cr2O3 Catalysts , 1982 .

[36]  J. Benziger A Mechanistic Study of Nitromethane Decomposition on Ni Catalysts. , 1982 .

[37]  Sanford Gordon,et al.  Computer program for calculation of complex chemical equilibrium compositions , 1972 .

[38]  L. Staudenmaier,et al.  Verfahren zur Darstellung der Graphitsäure , 1898 .

[39]  J. S. Dennis,et al.  The reactions of NO with diesel soot, fullerene, carbon nanotubes and activated carbons doped with transition metals , 2009 .

[40]  R. Car,et al.  Raman spectra of graphite oxide and functionalized graphene sheets. , 2008, Nano letters.

[41]  Vigor Yang,et al.  Combustion of nano-aluminum and liquid water , 2007 .

[42]  K. Kuo,et al.  Modeling of nitromethane flame structure and burning behavior , 2007 .

[43]  K. Kuo,et al.  Potential Usage of Energetic Nano-sized Powders for Combustion and Rocket Propulsion , 2003 .

[44]  Grant A. Risha,et al.  Characterization of Nano-Sized Particles for Propulsion Applications , 2003 .

[45]  K. Kuo,et al.  High-pressure combustion behavior of nitromethane , 1999 .

[46]  M. Yamaguchi Decomposition of adsorbed nitromethane on [gamma ]-alumina , 1997 .

[47]  Stephen U. S. Choi Enhancing thermal conductivity of fluids with nano-particles , 1995 .

[48]  昇 一ノ瀬,et al.  Superfine particle technology , 1992 .

[49]  C. Rohlfing,et al.  Microscopic evidence that the nitromethane aci ion is a rate controlling species in the detonation of liquid nitromethane , 1986 .

[50]  R. W. James Propellants and explosives , 1974 .

[51]  I. Barin,et al.  Thermochemical properties of inorganic substances , 1973 .