The Automatic Dynamic Penalisation method (ADP) for handling constraints with genetic algorithms

In this paper we present a new penalty-based approach, developed within the framework of genetic algorithms (GAs) for constrained optimisation problems. The proposed technique, which is called Automatic Dynamic Penalisation (ADP) method, belongs to the category of exterior penalty-based strategies. The aim of this work consists in providing a simple and effective constraint-handling technique without the need of tuning the penalty coefficients values for any considered optimisation problem. The key-concept that underlies the ADP strategy is that it is possible to exploit the information restrained in the population, at the current generation, in order to guide the search through the whole definition domain and to give a proper evaluation of the penalty coefficients. The proposed strategy is firstly applied to three different benchmark problems and the obtained results are compared to those available in the literature in order to show the effectiveness of the ADP technique. Finally, as examples of real-world engineering applications, the ADP method is employed to search a solution for two different optimisation problems, i.e. the optimal design of damping properties of hybrid elastomer/composite laminates and the maximisation of the first buckling load of composite laminates with given elastic symmetries.

[1]  R. Haftka,et al.  Constrained particle swarm optimization using a bi-objective formulation , 2009 .

[2]  S. N. Kramer,et al.  An Augmented Lagrange Multiplier Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design , 1994 .

[3]  Kalyanmoy Deb,et al.  GeneAS: A Robust Optimal Design Technique for Mechanical Component Design , 1997 .

[4]  Jonathan A. Wright,et al.  Self-adaptive fitness formulation for constrained optimization , 2003, IEEE Trans. Evol. Comput..

[5]  G. McCormick,et al.  Extensions of SUMT for Nonlinear Programming: Equality Constraints and Extrapolation , 1966 .

[6]  J. Berthelot,et al.  Damping analysis of composite materials and structures , 2008 .

[7]  Ashok Dhondu Belegundu,et al.  A Study of Mathematical Programming Methods for Structural Optimization , 1985 .

[8]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[9]  C.-Y. Lin,et al.  Self-organizing adaptive penalty strategy in constrained genetic search , 2004 .

[10]  Lawrence Davis,et al.  Using a genetic algorithm to optimize problems with feasibility constraints , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[11]  Ling Wang,et al.  An effective differential evolution with level comparison for constrained engineering design , 2010 .

[12]  Yao Koutsawa,et al.  Identification of electromechanical properties of piezoelectric structures through evolutionary optimisation techniques , 2012 .

[13]  Kalyanmoy Deb,et al.  Optimal design of a welded beam via genetic algorithms , 1991 .

[14]  Ling Wang,et al.  An effective co-evolutionary differential evolution for constrained optimization , 2007, Appl. Math. Comput..

[15]  Ling Wang,et al.  An effective hybrid genetic algorithm with flexible allowance technique for constrained engineering design optimization , 2012, Expert Syst. Appl..

[16]  Ling Wang,et al.  A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization , 2007, Appl. Math. Comput..

[17]  Paolo Vannucci,et al.  Designing the elastic properties of laminates as an optimisation problem: a unified approach based on polar tensor invariants , 2006 .

[18]  Marco Montemurro,et al.  A Two-Level Procedure for the Global Optimum Design of Composite Modular Structures—Application to the Design of an Aircraft Wing , 2012, J. Optim. Theory Appl..

[19]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms in Engineering Applications , 1997, Springer Berlin Heidelberg.

[20]  S. Tsai,et al.  Introduction to composite materials , 1980 .

[21]  Carlos A. Coello Coello,et al.  Constraint-handling in genetic algorithms through the use of dominance-based tournament selection , 2002, Adv. Eng. Informatics.

[22]  Charles W. Carroll The Created Response Surface Technique for Optimizing Nonlinear, Restrained Systems , 1961 .

[23]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[24]  Jasbir S. Arora,et al.  Introduction to Optimum Design , 1988 .

[25]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[26]  Patrick D. Surry,et al.  The COMOGA Method: Constrained Optimisation by Multi-Objective Genetic Algorithms , 1997 .

[27]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[28]  F. Glover HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .

[29]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[30]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[31]  K. M. Ragsdell,et al.  Optimal Design of a Class of Welded Structures Using Geometric Programming , 1976 .

[32]  Marco Montemurro,et al.  A Two-Level Procedure for the Global Optimum Design of Composite Modular Structures—Application to the Design of an Aircraft Wing , 2012, J. Optim. Theory Appl..

[33]  Angela Vincenti,et al.  BIANCA: a genetic algorithm to solve hard combinatorial optimisation problems in engineering , 2010, J. Glob. Optim..

[34]  B. C. Nakra VIBRATION CONTROL IN MACHINES AND STRUCTURES USING VISCOELASTIC DAMPING , 1998 .

[35]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[36]  Lawrence Davis,et al.  Genetic Algorithms and Simulated Annealing , 1987 .

[37]  R. Courant Variational methods for the solution of problems of equilibrium and vibrations , 1943 .

[38]  Anthony Chen,et al.  Constraint handling in genetic algorithms using a gradient-based repair method , 2006, Comput. Oper. Res..

[39]  Yao Koutsawa,et al.  Design of damping properties of hybrid laminates through a global optimisation strategy , 2012 .

[40]  Ling Wang,et al.  An effective co-evolutionary particle swarm optimization for constrained engineering design problems , 2007, Eng. Appl. Artif. Intell..

[41]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[42]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[43]  Zhun Fan,et al.  Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique , 2009 .

[44]  Carlos A. Coello Coello,et al.  THEORETICAL AND NUMERICAL CONSTRAINT-HANDLING TECHNIQUES USED WITH EVOLUTIONARY ALGORITHMS: A SURVEY OF THE STATE OF THE ART , 2002 .

[45]  E. Verron,et al.  Simultaneous geometrical and material optimal design of hybrid elastomer/composite sandwich plates , 2011 .