Two-dimensional transition metal dichalcogenide hybrid materials for energy applications

Abstract Two-dimensional transition metal dichalcogenides (2D TMDs) possess a rich set of extraordinary structural, chemical, electrical, and optical properties unattainable with any traditional materials. A large number of these properties are particularly suitable for energy generation/conversion applications, which renders unprecedented yet tremendous opportunities for addressing the multi-faceted demands of up-coming energy technologies. Heterogeneously integrating 2D TMDs with other energy materials is projected to improve the performance of existing energy devices and/or achieve unconventional functionalities in a highly synergic manner, which cannot be catered by stand-alone 2D TMDs. In this article, we present a comprehensive review on the up-to-date progress in the development of 2D TMD hybrid materials for a variety of energy applications. This review focuses on addressing how the incorporation of 2D TMDs can help manipulate the functionalities of conventional energy materials to achieve targeted and improved energy device performances. An overview of the recent progress in the development of various 2D TMD hybrid materials and their fabrication strategies is presented, followed by a survey on various energy devices based on these materials and their performance comparison. Current challenges associated with material developments are discussed, and forward-looking outlooks assessing unexplored research areas are also suggested.

[1]  Yuan Hu,et al.  A noncovalent functionalization approach to improve the dispersibility and properties of polymer/MoS 2 composites , 2014 .

[2]  K. Ho,et al.  MoSe2 nanosheet/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) composite film as a Pt-free counter electrode for dye-sensitized solar cells ☆ , 2016 .

[3]  D. Mihailovic,et al.  Dichalcogenide Nanotube Electrodes for Li‐Ion Batteries , 2002 .

[4]  Ling-Ling Wang,et al.  One-step preparation of layered molybdenum disulfide/multi-walled carbon nanotube composites for enhanced performance supercapacitor , 2014 .

[5]  Su-Huai Wei,et al.  Novel and Enhanced Optoelectronic Performances of Multilayer MoS2–WS2 Heterostructure Transistors , 2014 .

[6]  S. Dou,et al.  WS₂@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. , 2014, Chemical communications.

[7]  Ctirad Uher,et al.  A new thermoelectric material: CsBi4Te6. , 2004, Journal of the American Chemical Society.

[8]  Parikshit Sahatiya,et al.  Large‐Area, Flexible Broadband Photodetector Based on ZnS–MoS2 Hybrid on Paper Substrate , 2017 .

[9]  Ran Liu,et al.  MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. , 2008, Journal of the American Chemical Society.

[10]  T. Akita,et al.  Facile synthesis and catalytic activity of MoS(2)/TiO(2) by a photodeposition-based technique and its oxidized derivative MoO(3)/TiO(2) with a unique photochromism. , 2011, Journal of colloid and interface science.

[11]  Akshay A. Murthy,et al.  Au@MoS2 Core-Shell Heterostructures with Strong Light-Matter Interactions. , 2016, Nano letters.

[12]  Hua Wang,et al.  Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage. , 2014, Small.

[13]  S. Hussain,et al.  Hydrothermal synthesis, characterization and optical absorption property of nanoscale WS2/TiO2 composites , 2015 .

[14]  Lelia Cosimbescu,et al.  Exfoliated MoS2 Nanocomposite as an Anode Material for Lithium Ion Batteries , 2010 .

[15]  F. Libisch,et al.  Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction , 2014, Nano letters.

[16]  Jeng-Yu Lin,et al.  Few-layer MoS2 nanosheets coated onto multi-walled carbon nanotubes as a low-cost and highly electrocatalytic counter electrode for dye-sensitized solar cells , 2012 .

[17]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[18]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[19]  Zhaolin Li,et al.  MoS2 Nanosheets Vertically Grown on Graphene Sheets for Lithium-Ion Battery Anodes. , 2016, ACS nano.

[20]  Y. Lou,et al.  Nanocomposite of ultrasmall Co3O4 nanoparticles deposited on ultrathin MoS2 surfaces for excellent performance anode materials in lithium ion batteries , 2017 .

[21]  M. Delville,et al.  Exfoliation-induced nanoribbon formation of poly(3,4-ethylene dioxythiophene) PEDOT between MoS2 layers as cathode material for lithium batteries , 2006 .

[22]  F. Pan,et al.  2D hetero-nanosheets to enable ultralow thermal conductivity by all scale phonon scattering for highly thermoelectric performance , 2016 .

[23]  Weixiang Chen,et al.  In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. , 2011, Chemical communications.

[24]  Y. Meng,et al.  Layered SnS2‐Reduced Graphene Oxide Composite – A High‐Capacity, High‐Rate, and Long‐Cycle Life Sodium‐Ion Battery Anode Material , 2014, Advanced materials.

[25]  Jerzy Walendziewski,et al.  Photocatalytic Water Splitting over Pt−TiO2 in the Presence of Sacrificial Reagents , 2005 .

[26]  H. Zeng,et al.  Van der Waals bilayer antimonene: A promising thermophotovoltaic cell material with 31% energy conversion efficiency , 2017 .

[27]  Bai Xu,et al.  Preparation and characterization of polythiophene/molybdenum disulfide intercalation material , 2009 .

[28]  Timothy D. Burchell,et al.  Carbon materials for advanced technologies , 1999 .

[29]  Jia Zhu,et al.  A van der Waals pn heterojunction with organic/inorganic semiconductors , 2015, 1511.02361.

[30]  Christopher M. Smyth,et al.  Contact Metal–MoS2 Interfacial Reactions and Potential Implications on MoS2-Based Device Performance , 2016 .

[31]  Hao Luo,et al.  Nano-MoS2/poly (3,4-ethylenedioxythiophene): Poly(styrenesulfonate) composite prepared by a facial dip-coating process for Li-ion battery anode , 2014 .

[32]  A. Jeffery,et al.  Two-Dimensional Nanosheets and Layered Hybrids of MoS2 and WS2 through Exfoliation of Ammoniated MS2 (M = Mo,W) , 2014 .

[33]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[34]  Shin-Shem Pei,et al.  High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains , 2013 .

[35]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[36]  S. Haigh,et al.  Synthesis of Lateral Size-Controlled Monolayer 1H-MoS2@Oleylamine as Supercapacitor Electrodes. , 2016 .

[37]  L. Archer,et al.  Self-assembled MoS2–carbon nanostructures: influence of nanostructuring and carbon on lithium battery performance , 2012 .

[38]  Jinghong Li,et al.  Facilitated Lithium Storage in MoS2 Overlayers Supported on Coaxial Carbon Nanotubes , 2007 .

[39]  Xiaoyun He,et al.  Liquid Phase Exfoliated MoS2 Nanosheets Percolated with Carbon Nanotubes for High Volumetric/Areal Capacity Sodium-Ion Batteries. , 2016, ACS nano.

[40]  S. Chou,et al.  Tucked flower-like SnS2/Co3O4 composite for high-performance anode material in lithium-ion batteries , 2016 .

[41]  Wang Yao,et al.  Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. , 2014, Nature materials.

[42]  X. Lou,et al.  Glucose-assisted growth of MoS2 nanosheets on CNT backbone for improved lithium storage properties. , 2011, Chemistry.

[43]  Yue Ma,et al.  Double Transition-Metal Chalcogenide as a High-Performance Lithium-Ion Battery Anode Material , 2014 .

[44]  X. Lou,et al.  Mixed transition-metal oxides: design, synthesis, and energy-related applications. , 2014, Angewandte Chemie.

[45]  H. Shin,et al.  Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. , 2013, Angewandte Chemie.

[46]  H. Alshareef,et al.  Mechanistic Insight into the Stability of HfO2 -Coated MoS2 Nanosheet Anodes for Sodium Ion Batteries. , 2015, Small.

[47]  B. Xiang,et al.  MoS2 nanosheet/TiO2 nanowire hybrid nanostructures for enhanced visible-light photocatalytic activities. , 2014, Chemical communications.

[48]  Lele Peng,et al.  Nanostructured conductive polymers for advanced energy storage. , 2015, Chemical Society reviews.

[49]  K. Ko'smider,et al.  Electronic properties of the MoS 2 -WS 2 heterojunction , 2012, 1212.0111.

[50]  Y. Iwasa,et al.  Gate-Optimized Thermoelectric Power Factor in Ultrathin WSe2 Single Crystals. , 2016, Nano letters.

[51]  Kenry,et al.  Large‐Area, Periodic, Hexagonal Wrinkles on Nanocrystalline Graphitic Film , 2015 .

[52]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[53]  Shengli Zhu,et al.  Pd coated MoS2 nanoflowers for highly efficient hydrogen evolution reaction under irradiation , 2015 .

[54]  Hua Zhang,et al.  Multifunctional Architectures Constructing of PANI Nanoneedle Arrays on MoS2 Thin Nanosheets for High-Energy Supercapacitors. , 2015, Small.

[55]  J. Schroers,et al.  Heterogeneous WSx/WO₃ Thorn-Bush Nanofiber Electrodes for Sodium-Ion Batteries. , 2016, ACS Nano.

[56]  Yu Xiao,et al.  Silver wrapped MoS2 hybrid electrode materials for high-performance supercapacitor , 2017 .

[57]  Yoshihisa Inoue,et al.  Large current modulation in exfoliated-graphene/MoS2/metal vertical heterostructures , 2014 .

[58]  A. Manthiram,et al.  High-performance Na2Ti2O5 nanowire arrays coated with VS2 nanosheets for sodium-ion storage , 2015 .

[59]  M. Misra,et al.  Functionalization of self-organized TiO2 nanotubes with Pd nanoparticles for photocatalytic decomposition of dyes under solar light illumination. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[60]  Yannan Xie,et al.  Flexible thermoelectric nanogenerator based on the MoS2/graphene nanocomposite and its application for a self-powered temperature sensor , 2017 .

[61]  Jr-hau He,et al.  Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface , 2015, Science.

[62]  Fei Meng,et al.  Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. , 2013, Journal of the American Chemical Society.

[63]  Jung-Kul Lee,et al.  3D MoS2–Graphene Microspheres Consisting of Multiple Nanospheres with Superior Sodium Ion Storage Properties , 2015 .

[64]  Xianyu Deng,et al.  Metal-Organic-Compound-Modified MoS2 with Enhanced Solubility for High-Performance Perovskite Solar Cells. , 2017, ChemSusChem.

[65]  Wei-min Liu,et al.  Structure characterization and conductive performance of polypyrrol‐molybdenum disulfide intercalation materials , 2004 .

[66]  Hongjian Yan,et al.  Photocatalytic H2 Evolution on MoS2/CdS Catalysts under Visible Light Irradiation , 2010 .

[67]  S. Koester,et al.  Ab-Initio Simulation of van der Waals MoTe2–SnS2 Heterotunneling FETs for Low-Power Electronics , 2015, IEEE Electron Device Letters.

[68]  Y. Maniwa,et al.  Thermoelectric properties of WS2 nanotube networks , 2016 .

[69]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[70]  Xiaodong Wang,et al.  Highly enhanced thermoelectric performance of WS2 nanosheets upon embedding PEDOT:PSS , 2017 .

[71]  Bo Chen,et al.  Au nanoparticle-modified MoS2 nanosheet-based photoelectrochemical cells for water splitting. , 2014, Small.

[72]  Darshana Wickramaratne,et al.  Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. , 2014, The Journal of chemical physics.

[73]  Large and tunable photothermoelectric effect in single-layer MoS2. , 2013, Nano letters.

[74]  Zhenyu Jin,et al.  High turnover frequency of hydrogen evolution reaction on amorphous MoS2 thin film directly grown by atomic layer deposition. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[75]  Xiao Shang,et al.  Carbon fiber cloth supported interwoven WS 2 nanosplates with highly enhanced performances for supercapacitors , 2017 .

[76]  Guosong Hong,et al.  MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[77]  Zhiyong Tang,et al.  Growth of Polypyrrole Ultrathin Films on MoS2 Monolayers as High‐Performance Supercapacitor Electrodes , 2015, Advanced materials.

[78]  Wei Xu,et al.  Hierarchical MoS2 nanowires/NiCo2O4 nanosheets supported on Ni foam for high-performance asymmetric supercapacitors , 2018 .

[79]  Lain-Jong Li,et al.  Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. , 2015, Chemical Society reviews.

[80]  A. K. Thakur,et al.  Facile synthesis and electrochemical evaluation of PANI/CNT/MoS2 ternary composite as an electrode material for high performance supercapacitor , 2017 .

[81]  K. Loh,et al.  Phase-engineered transition-metal dichalcogenides for energy and electronics , 2015 .

[82]  Ying Yu,et al.  Carbon-Infused MoS2 Supported on TiO2 Nanosheet Arrays for Intensified Anodes in Lithium Ion Batteries , 2016 .

[83]  Ziqiang Zhu,et al.  Hydrothermal Synthesis of Novel MoS2/BiVO4 Hetero-Nanoflowers with Enhanced Photocatalytic Activity and a Mechanism Investigation , 2015 .

[84]  Jing Kong,et al.  Role of the seeding promoter in MoS2 growth by chemical vapor deposition. , 2014, Nano letters.

[85]  X. Xia,et al.  Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. , 2015, Journal of the American Chemical Society.

[86]  Xiaoxuan Ren,et al.  Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array , 2017, Nanoscale Research Letters.

[87]  Jacob Bonde,et al.  Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. , 2005, Journal of the American Chemical Society.

[88]  Ziqiang Zhu,et al.  MoS2/Graphene Hybrid Nanoflowers with Enhanced Electrochemical Performances as Anode for Lithium-Ion Batteries , 2015 .

[89]  Y. Coffinier,et al.  Hydrothermal preparation of MoS2/TiO2/Si nanowires composite with enhanced photocatalytic performance under visible light , 2016 .

[90]  L. Wan,et al.  Rational design and electron transfer kinetics of MoS2/CdS nanodots-on-nanorods for efficient visible-light-driven hydrogen generation , 2016 .

[91]  U. Schwingenschlögl,et al.  Thermoelectric Response of Bulk and Monolayer MoSe2 and WSe2 , 2015 .

[92]  Jakob Kibsgaard,et al.  Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. , 2012, Nature materials.

[93]  Hui Peng,et al.  In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor , 2013 .

[94]  Xin Zhang,et al.  Molybdenum Polysulfide Anchored on Porous Zr-Metal Organic Framework To Enhance the Performance of Hydrogen Evolution Reaction , 2016 .

[95]  Jr-Hau He,et al.  Efficiency Enhancement of Silicon Heterojunction Solar Cells via Photon Management Using Graphene Quantum Dot as Downconverters. , 2016, Nano letters.

[96]  R. Bissessur,et al.  Novel alkyl substituted polyanilines/molybdenum disulfide nanocomposites , 2006 .

[97]  L. Archer,et al.  High-Capacity and Ultrafast Na-Ion Storage of a Self-Supported 3D Porous Antimony Persulfide-Graphene Foam Architecture. , 2017, Nano letters.

[98]  S. Im,et al.  Electric and Photovoltaic Behavior of a Few‐Layer α‐MoTe2/MoS2 Dichalcogenide Heterojunction , 2016, Advanced materials.

[99]  Yeonwoong Jung,et al.  High-Performance One-Body Core/Shell Nanowire Supercapacitor Enabled by Conformal Growth of Capacitive 2D WS2 Layers. , 2016, ACS nano.

[100]  Ziqiang Zhu,et al.  Synthesis of the MoS2@CuO heterogeneous structure with improved photocatalysis performance and H2O adsorption analysis. , 2015, Dalton transactions.

[101]  Xiaobin Fan,et al.  Utilization of MoS2 Nanosheets To Enhance the Photocatalytic Activity of ZnO for the Aerobic Oxidation of Benzyl Halides under Visible Light , 2016 .

[102]  T. Jaramillo,et al.  Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. , 2011, Nano letters.

[103]  Desheng Kong,et al.  Synthesis of MoS2 and MoSe2 films with vertically aligned layers. , 2013, Nano letters.

[104]  Ying Ma,et al.  Supercapacitor Performances of the MoS2/CoS2 Nanotube Arrays in Situ Grown on Ti Plate , 2017 .

[105]  Kuan-Hua Huang,et al.  Synthesis of lateral heterostructures of semiconducting atomic layers. , 2015, Nano letters.

[106]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[107]  Shun Mao,et al.  Perpendicularly oriented MoSe2 /graphene nanosheets as advanced electrocatalysts for hydrogen evolution. , 2015, Small.

[108]  Bin Yu,et al.  Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell , 2012 .

[109]  Y. Gogotsi,et al.  Synthesis of Two‐Dimensional Materials for Capacitive Energy Storage , 2016, Advanced materials.

[110]  Yan Yu,et al.  Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. , 2014, Angewandte Chemie.

[111]  Andras Kis,et al.  Single-layer MoS2 electronics. , 2015, Accounts of chemical research.

[112]  C. Liang,et al.  MoS2 nanosheets decorated with ultrafine Co3O4 nanoparticles for high-performance electrochemical capacitors , 2015 .

[113]  L. Fang,et al.  Three-dimensional flower-like MoS2-CoSe2 heterostructure for high performance superccapacitors. , 2018, Journal of colloid and interface science.

[114]  Phong Nguyen,et al.  Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties. , 2013, Nano letters.

[115]  L. Mädler,et al.  Photocatalytic H2 Evolution over TiO2 Nanoparticles. The Synergistic Effect of Anatase and Rutile , 2010 .

[116]  K. Koumoto,et al.  Intercalation: Building a Natural Superlattice for Better Thermoelectric Performance in Layered Chalcogenides , 2011 .

[117]  Yongsheng Zhu,et al.  Layered nanojunctions for hydrogen-evolution catalysis. , 2013, Angewandte Chemie.

[118]  Fei Meng,et al.  Vertical heterostructures of layered metal chalcogenides by van der Waals epitaxy. , 2014, Nano letters.

[119]  A. Pradhan,et al.  Enhanced photo-response in p-Si/MoS2 heterojunction-based solar cells , 2016 .

[120]  R. Ruoff,et al.  Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage , 2015, Science.

[121]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[122]  Chao Li,et al.  Asymmetric Supercapacitor Electrodes and Devices , 2017, Advanced materials.

[123]  Zhian Zhang,et al.  SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries , 2015 .

[124]  Mustafa Lotya,et al.  Large‐Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions , 2011, Advanced materials.

[125]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[126]  Kenji Koga,et al.  Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. , 2015, Nature materials.

[127]  Qingsheng Zeng,et al.  Van der Waals p–n Junction Based on an Organic–Inorganic Heterostructure , 2015 .

[128]  R. Yu,et al.  Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. , 2015, Chemical Society reviews.

[129]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[130]  Shouzhi Wang,et al.  Three-Dimensional MoS2 @CNT/RGO Network Composites for High-Performance Flexible Supercapacitors. , 2017, Chemistry.

[131]  J. Si,et al.  Enhanced thermoelectric performance of SnSe doped with layered MoS2/graphene , 2017 .

[132]  Teng Yang,et al.  Theoretical study of thermoelectric properties of MoS2 , 2014 .

[133]  S. A. Giamini,et al.  Two-dimensional semiconductor HfSe2 and MoSe2/HfSe2 van der Waals heterostructures by molecular beam epitaxy , 2015 .

[134]  R. Tenne,et al.  Decoration of WS2 Nanotubes and Fullerene-Like MoS2 with Gold Nanoparticles , 2014 .

[135]  Leroy Cronin,et al.  Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting , 2014, Science.

[136]  Feihe Huang,et al.  Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries , 2011 .

[137]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[138]  M. Ram,et al.  Polyethylenedioxythiophene and molybdenum disulfide nanocomposite electrodes for supercapacitor applications , 2017 .

[139]  Abdullah M. Asiri,et al.  Synthesis of porous tubular C/MoS2 nanocomposites and their application as a novel electrode material for supercapacitors with excellent cycling stability , 2013 .

[140]  Ke-Jing Huang,et al.  Flower-like nanoarchitecture assembled from Bi2S3 nanorod/MoS2 nanosheet heterostructures for high-performance supercapacitor electrodes , 2017 .

[141]  J. Shan,et al.  Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. , 2013, Nano letters.

[142]  Hua Zhang,et al.  Two-dimensional transition metal dichalcogenide nanosheet-based composites. , 2015, Chemical Society reviews.

[143]  Susumu Yoshikawa,et al.  Synthesis of TiO2 Nanotubes and Its Photocatalytic Activity for H2 Evolution , 2008 .

[144]  R. Kaner,et al.  Honeycomb carbon: a review of graphene. , 2010, Chemical reviews.

[145]  Pinshane Y. Huang,et al.  Grains and grain boundaries in single-layer graphene atomic patchwork quilts , 2010, Nature.

[146]  A Gholinia,et al.  Light-emitting diodes by band-structure engineering in van der Waals heterostructures. , 2014, Nature materials.

[147]  Sen Xin,et al.  Carbon nanofibers decorated with molybdenum disulfide nanosheets: synergistic lithium storage and enhanced electrochemical performance. , 2014, Angewandte Chemie.

[148]  Hong Yang,et al.  Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. , 2013, Chemical Society reviews.

[149]  Jieun Yang,et al.  Recent Strategies for Improving the Catalytic Activity of 2D TMD Nanosheets Toward the Hydrogen Evolution Reaction , 2016, Advanced materials.

[150]  Mobility enhancement and highly efficient gating of monolayer MoS 2 transistors with polymer electrolyte , 2012, 1207.4824.

[151]  Yi Xie,et al.  Atomically-thin two-dimensional sheets for understanding active sites in catalysis. , 2015, Chemical Society reviews.

[152]  X. Duan,et al.  Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes , 2014, Nano letters.

[153]  Z. Yin,et al.  Preparation and applications of mechanically exfoliated single-layer and multilayer MoS₂ and WSe₂ nanosheets. , 2014, Accounts of chemical research.

[154]  Yan Yao,et al.  Enhancing sodium-ion battery performance with interlayer-expanded MoS2–PEO nanocomposites , 2015 .

[155]  P. Kamat,et al.  Semiconductor−Metal Nanocomposites. Photoinduced Fusion and Photocatalysis of Gold-Capped TiO2 (TiO2/Gold) Nanoparticles , 2001 .

[156]  J. Kuo,et al.  High-Sulfur-Vacancy Amorphous Molybdenum Sulfide as a High Current Electrocatalyst in Hydrogen Evolution. , 2016, Small.

[157]  Yingfeng Li,et al.  Facile fabrication of MoS2/PEDOT–PSS composites as low-cost and efficient counter electrodes for dye-sensitized solar cells , 2014 .

[158]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[159]  Jung Ho Yu,et al.  Vertical heterostructure of two-dimensional MoS₂ and WSe₂ with vertically aligned layers. , 2015, Nano letters.

[160]  W. Choi,et al.  Vertically oriented MoS2 nanoflakes coated on 3D carbon nanotubes for next generation Li-ion batteries , 2016, Nanotechnology.

[161]  D. O’Carroll,et al.  Ultrafast Charge Transfer and Enhanced Absorption in MoS2-Organic van der Waals Heterojunctions Using Plasmonic Metasurfaces. , 2016, ACS nano.

[162]  Weifeng Zhang,et al.  Glucose aided synthesis of molybdenum sulfide/carbon nanotubes composites as counter electrode for high performance dye-sensitized solar cells , 2013 .

[163]  Mrinmoy De,et al.  Highly effective visible-light-induced H(2) generation by single-layer 1T-MoS(2) and a nanocomposite of few-layer 2H-MoS(2) with heavily nitrogenated graphene. , 2013, Angewandte Chemie.

[164]  Yanrong Li,et al.  Few-layered ReS2 nanosheets grown on carbon nanotubes: A highly efficient anode for high-performance lithium-ion batteries , 2017 .

[165]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[166]  J. Coleman,et al.  Production of Two-Dimensional Nanomaterials via Liquid-Based Direct Exfoliation. , 2016, Small.

[167]  L. Niu,et al.  Uniform Deposition of Co3O4 Nanosheets on Exfoliated MoS2 Nanosheets as Advanced Catalysts for Water Splitting , 2016 .

[168]  Jun Jin,et al.  MoS2 nanosheet functionalized with Cu nanoparticles and its application for glucose detection , 2013 .

[169]  J. Tu,et al.  Binder-free network-enabled MoS 2 -PPY-rGO ternary electrode for high capacity and excellent stability of lithium storage , 2016 .

[170]  J. Zhai,et al.  Layered MoS2 nanoparticles on TiO2 nanotubes by a photocatalytic strategy for use as high-performance electrocatalysts in hydrogen evolution reactions , 2015 .

[171]  Jian Zhou,et al.  Band offsets and heterostructures of two-dimensional semiconductors , 2013 .

[172]  Xiaoping Zhou,et al.  Hydrothermal synthesis of flower-like MoS2 nanospheres for electrochemical supercapacitors. , 2014, Journal of nanoscience and nanotechnology.

[173]  P. Ajayan,et al.  Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures. , 2015, Nano letters.

[174]  Ling-Ling Wang,et al.  Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor , 2013 .

[175]  H. Fei,et al.  Edge‐Oriented MoS2 Nanoporous Films as Flexible Electrodes for Hydrogen Evolution Reactions and Supercapacitor Devices , 2014, Advanced materials.

[176]  F. Xia,et al.  Van der Waals heterostructures: Stacked 2D materials shed light. , 2015, Nature materials.

[177]  Y. Shao,et al.  Electrochemically Fabricated Polypyrrole and MoSx Copolymer Films as a Highly Active Hydrogen Evolution Electrocatalyst , 2014, Advanced materials.

[178]  M. Dresselhaus,et al.  Transport Properties of a MoS2/WSe2 Heterojunction Transistor and Its Potential for Application. , 2016, Nano letters.

[179]  Guoxiu Wang,et al.  MoS2/Graphene Composite Anodes with Enhanced Performance for Sodium‐Ion Batteries: The Role of the Two‐Dimensional Heterointerface , 2015 .

[180]  Deji Akinwande,et al.  Recent development of two-dimensional transition metal dichalcogenides and their applications , 2017 .

[181]  Jun Jiang,et al.  Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. , 2013, Chemical Society reviews.

[182]  Ruitao Lv,et al.  Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. , 2015, Accounts of chemical research.

[183]  Jeng-Yu Lin,et al.  Facile synthesis of MoS2/graphene nanocomposite with high catalytic activity toward triiodide reduction in dye-sensitized solar cells , 2012 .

[184]  Marco-Tulio F. Rodrigues,et al.  3D Nanostructured Molybdenum Diselenide/Graphene Foam as Anodes for Long-Cycle Life Lithium-ion Batteries , 2015 .

[185]  Hua Xu,et al.  High responsivity and gate tunable graphene-MoS2 hybrid phototransistor. , 2014, Small.

[186]  Oliver G. Schmidt,et al.  Hierarchical MoS2/Polyaniline Nanowires with Excellent Electrochemical Performance for Lithium‐Ion Batteries , 2013, Advanced materials.

[187]  Jiujun Zhang,et al.  Scalable synthesis of Sb/MoS2/C composite as high performance anode material for lithium ion batteries , 2017 .

[188]  Yuanyuan Xie,et al.  A three-dimensionally interconnected carbon nanotube/layered MoS2 nanohybrid network for lithium ion battery anode with superior rate capacity and long-cycle-life , 2015 .

[189]  Hua Zhang,et al.  Two-dimensional transition metal dichalcogenide (TMD) nanosheets. , 2015, Chemical Society reviews.

[190]  Tobin J Marks,et al.  Hybrid, Gate-Tunable, van der Waals p-n Heterojunctions from Pentacene and MoS2. , 2016, Nano letters.

[191]  Shouheng Sun,et al.  A General Approach to Noble Metal−Metal Oxide Dumbbell Nanoparticles and Their Catalytic Application for CO Oxidation , 2010 .

[192]  Lain-Jong Li,et al.  Enhanced thermoelectric power in two-dimensional transition metal dichalcogenide monolayers , 2016 .

[193]  J. Xue,et al.  Ultrasmall Fe₃O₄ nanoparticle/MoS₂ nanosheet composites with superior performances for lithium ion batteries. , 2014, Small.

[194]  S. Lodha,et al.  Schottky barrier heights for Au and Pd contacts to MoS2 , 2014 .

[195]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[196]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[197]  Dong Sung Choi,et al.  Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. , 2014, Nano letters.

[198]  Seok‐In Na,et al.  Exfoliated and partially oxidized MoS₂ nanosheets by one-pot reaction for efficient and stable organic solar cells. , 2014, Small.

[199]  Mengqiu Long,et al.  Dual role of monolayer MoS2 in enhanced photocatalytic performance of hybrid MoS2/SnO2 nanocomposite , 2016 .

[200]  H. Schmidt,et al.  Large thermoelectricity via variable range hopping in chemical vapor deposition grown single-layer MoS2. , 2014, Nano letters.

[201]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[202]  Ke-Jing Huang,et al.  Layered MoS2–graphene composites for supercapacitor applications with enhanced capacitive performance , 2013 .