2023 Choked accretion onto Kerr-Sen black holes in Einstein-Maxwell-Dilation-Axion gravity

We study the choked accretion process of an ultrarelativistic fluid onto axisymmetric Kerr-Sen black holes in Einstein-Maxwell-Dilation-Axion theory. We calculate the solution describing the velocity potential Φ of a stationary, irrotational fluid, which satisfies the stiff equation of state and draw the streamlined diagram of the quadrupolar flow solution. We investigate how parameters affect the solution’s coefficient and stagnation point. The injection rate, ejection rate, and critical angle are discussed in detail at the end of the article. If the inner and outer event horizons of the black hole are satisfied, then we can find that the ratio of the ejection rate to the setting rate increases with an increase in the dilation parameter.

[1]  Ziqiang Cai,et al.  Thin accretion disks around a black hole in Einstein-Aether-scalar theory , 2022, The European Physical Journal C.

[2]  Ziqiang Cai,et al.  Accretion of the Vlasov gas onto a Schwarzschild-like black hole , 2022, Physics of the Dark Universe.

[3]  Rongjia Yang,et al.  Adiabatic accretion onto black holes in Einstein-Maxwell-scalar theory , 2022, Journal of Cosmology and Astroparticle Physics.

[4]  Rongjia Yang,et al.  Exact solution for accretion onto a moving charged dilaton black hole , 2021, The European Physical Journal C.

[5]  P. Mach,et al.  Accretion of Dark Matter onto a Moving Schwarzschild Black Hole: An Exact Solution. , 2021, Physical review letters.

[6]  P. Mach,et al.  Accretion of the relativistic Vlasov gas onto a moving Schwarzschild black hole: Exact solutions , 2020, Physical Review D.

[7]  O. Sarbach,et al.  Choked accretion onto a Kerr black hole , 2020, 2009.06653.

[8]  Indrani Banerjee,et al.  Implications of Einstein–Maxwell dilaton–axion gravity from the black hole continuum spectrum , 2020, 2007.13980.

[9]  X. Hernández,et al.  Choked Accretion onto a Schwarzschild Black Hole: A Hydrodynamical Jet-launching Mechanism , 2019, The Astrophysical Journal.

[10]  X. Hernández,et al.  Choked accretion: from radial infall to bipolar outflows by breaking spherical symmetry , 2019, Monthly Notices of the Royal Astronomical Society.

[11]  A. Tchekhovskoy,et al.  Bardeen–Petterson alignment, jets, and magnetic truncation in GRMHD simulations of tilted thin accretion discs , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  C. Fendt,et al.  Jet Launching in Resistive GR-MHD Black Hole–Accretion Disk Systems , 2018, 1804.09652.

[13]  Rongjia Yang Constraints from accretion onto a Tangherlini–Reissner–Nordstrom black hole , 2018, The European Physical Journal C.

[14]  Emilio Tejeda Incompressible wind accretion , 2017, 1705.07093.

[15]  Rongjia Yang,et al.  Accretion onto a moving Reissner-Nordström black hole , 2016, 1609.08298.

[16]  Y. Liao,et al.  Phase-transition Theory of Kerr Black Holes in the Electromagnetic Field , 2016, 1609.00636.

[17]  Canisius Bernard Stationary charged scalar clouds around black holes in string theory , 2016, 1608.05974.

[18]  Rongjia Yang,et al.  Accretion onto a Kiselev black hole , 2016, 1605.02320.

[19]  Rongjia Yang Quantum gravity corrections to accretion onto a Schwarzschild black hole , 2015, 1504.04223.

[20]  V. Frolov,et al.  Rigidly rotating zero-angular-momentum observer surfaces in the Kerr spacetime , 2014 .

[21]  Apratim Ganguly,et al.  Accretion onto a black hole in a string cloud background , 2014, 1409.7872.

[22]  P. Koch,et al.  MEASURING MASS ACCRETION RATE ONTO THE SUPERMASSIVE BLACK HOLE IN M87 USING FARADAY ROTATION MEASURE WITH THE SUBMILLIMETER ARRAY , 2014, 1402.5238.

[23]  H. M. Siahaan,et al.  Hidden and generalized conformal symmetry of Kerr–Sen spacetimes , 2012, 1206.0714.

[24]  Jhumpa Bhadra,et al.  Accretion of new variable modified Chaplygin gas and generalized cosmic Chaplygin gas onto Schwarzschild and Kerr–Newman black holes , 2011, 1112.6154.

[25]  Vyacheslav N. Shalyapin,et al.  ACCRETION ONTO THE SUPERMASSIVE BLACK HOLE IN THE HIGH-REDSHIFT RADIO-LOUD AGN 0957+561 , 2011, 1109.3330.

[26]  M. Abramowicz,et al.  Foundations of Black Hole Accretion Disk Theory , 2011, Living reviews in relativity.

[27]  X. Hernández,et al.  A Hydrodynamical Mechanism for Generating Astrophysical Jets , 2011, 1103.0250.

[28]  S. Chernov,et al.  Ultrahard fluid and scalar field in the Kerr-Newman metric , 2008, 0807.0449.

[29]  F. Hueyotl-Zahuantitla,et al.  Spherically Symmetric Accretion onto a Black Hole at the Center of a Young Stellar Cluster , 2008, 0806.3054.

[30]  V. Dokuchaev,et al.  Phantom energy accretion onto black hole , 2006 .

[31]  E. Gourgoulhon AN INTRODUCTION TO RELATIVISTIC HYDRODYNAMICS , 2006, gr-qc/0603009.

[32]  J. McKinney General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems , 2006, astro-ph/0603045.

[33]  Madrid,et al.  Evolution of a Kerr-Newman Black Hole in a Dark Energy Universe , 2005, astro-ph/0510051.

[34]  Isao Okamoto,et al.  Electromagnetic Extraction of Energy from Kerr Black Holes , 2005, astro-ph/0506302.

[35]  V. Dokuchaev,et al.  The accretion of dark energy onto a black hole , 2005, astro-ph/0505618.

[36]  B. Punsly,et al.  Simulations of Jets Driven by Black Hole Rotation , 2004, Science.

[37]  V. Dokuchaev,et al.  Black hole mass decreasing due to phantom energy accretion. , 2004, Physical review letters.

[38]  P. Anninos,et al.  Tilted Thick-Disk Accretion onto a Kerr Black Hole , 2003 .

[39]  M. Rogatko Positivity of energy in Einstein–Maxwell axion–dilaton gravity , 2002, hep-th/0209126.

[40]  N. Murray,et al.  Hot Settling Accretion Flow onto a Spinning Black Hole , 2002, astro-ph/0204254.

[41]  Tiziana Di Matteo,et al.  Accretion onto the Supermassive Black Hole in M87 , 2002, astro-ph/0202238.

[42]  E. Malec Fluid accretion onto a spherical black hole: Relativistic description versus the Bondi model , 1999, gr-qc/9907028.

[43]  Vladimir I.Pariev Hydrodynamic accretion onto rapidly rotating Kerr black hole , 1995, astro-ph/9510008.

[44]  García,et al.  Class of stationary axisymmetric solutions of the Einstein-Maxwell-dilaton-axion field equations. , 1995, Physical review letters.

[45]  V. Karas,et al.  Accretion onto a rotating compact object in general relativity , 1993 .

[46]  K. Olive,et al.  Physical properties of four-dimensional superstring gravity black hole solutions , 1993, hep-th/9301129.

[47]  Sen,et al.  Rotating charged black hole solution in heterotic string theory. , 1992, Physical review letters.

[48]  Horowitz,et al.  Charged black holes in string theory. , 1991, Physical review. D, Particles and fields.

[49]  Shapiro,et al.  Accretion onto a moving black hole: An exact solution. , 1988, Physical review letters.

[50]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[51]  F. Curtis Michel,et al.  Accretion of matter by condensed objects , 1971 .

[52]  H. Bondi,et al.  On spherically symmetrical accretion , 1952 .

[53]  F. Hoyle,et al.  On the Mechanism of Accretion by Stars , 1944 .

[54]  F. Hoyle,et al.  On the physical aspects of accretion by stars , 1940, Mathematical Proceedings of the Cambridge Philosophical Society.

[55]  F. Hoyle,et al.  On the accretion of interstellar matter by stars , 1940, Mathematical Proceedings of the Cambridge Philosophical Society.

[56]  F. Hoyle,et al.  The Evolution of the Stars , 1939, Nature.

[57]  F. Hoyle,et al.  Accretion Theory of Stellar Evolution , 1941, Nature.