A Relational Approach to Content-based Analysis of Motion Capture Data

Motion capture or mocap systems allow for tracking and recording of human motions at high spatial and temporal resolutions. The resulting 3D mocap data is used for motion analysis in fields such as sports sciences, biomechanics, or computer vision, and in particular for motion synthesis in data-driven computer animation. In view of a rapidly growing corpus of motion data, automatic retrieval, annotation, and classification of such data has become an important research field. Since logically similar motions may exhibit significant spatio-temporal variations, the notion of similarity is of crucial importance in comparing motion data streams. After reviewing various aspects of motion similarity, we discuss as the main contribution of this paper a relational approach to content-based motion analysis, which exploits the existence of an explicitly given kinematic model underlying the 3D mocap data. Considering suitable combinations of boolean relations between specified body points allows for capturing the motion content while disregarding motion details. Finally, we sketch how such relational features can be used for automatic and efficient segmentation, indexing, retrieval, classification, and annotation of mocap data.

[1]  Meinard Müller,et al.  An Information Retrieval System for Motion Capture Data , 2006, ECIR.

[2]  Michael Neff,et al.  Methods for exploring expressive stance , 2004, SCA '04.

[3]  Martin A. Giese,et al.  Morphable Models for the Analysis and Synthesis of Complex Motion Patterns , 2000, International Journal of Computer Vision.

[4]  Yasuhiko Sakamoto,et al.  Motion map: image-based retrieval and segmentation of motion data , 2004, SCA '04.

[5]  Michael Neff,et al.  AER: aesthetic exploration and refinement for expressive character animation , 2005, SCA '05.

[6]  Dinesh K. Pai,et al.  Interaction capture and synthesis , 2005, SIGGRAPH 2005.

[7]  H. Chandler Database , 1985 .

[8]  Kazuyoshi Takayama,et al.  Holographic interferometric visualization of the Richtmyer-Meshkov instability induced by cylindrical shock waves , 1999 .

[9]  Ahmed M. Elgammal,et al.  Gait style and gait content: bilinear models for gait recognition using gait re-sampling , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[10]  Bodo Rosenhahn,et al.  A System for Marker-Less Human Motion Estimation , 2005, DAGM-Symposium.

[11]  Lucas Kovar,et al.  Flexible automatic motion blending with registration curves , 2003, SCA '03.

[12]  M. A. Lafortune,et al.  Skin marker displacement at the knee joint , 1993 .

[13]  Christoph Bregler,et al.  Learning and recognizing human dynamics in video sequences , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  Zoran Popovic,et al.  Motion warping , 1995, SIGGRAPH.

[15]  V. M. Zat︠s︡iorskiĭ Kinematics of human motion , 1998 .

[16]  Dimitrios Gunopulos,et al.  Indexing Large Human-Motion Databases , 2004, VLDB.

[17]  Meinard Müller,et al.  Motion templates for automatic classification and retrieval of motion capture data , 2006, SCA '06.

[18]  Michael Gleicher,et al.  Automated extraction and parameterization of motions in large data sets , 2004, SIGGRAPH 2004.

[19]  Eugene Fiume,et al.  An efficient search algorithm for motion data using weighted PCA , 2005, SCA '05.

[20]  Chih-Yi Chiu,et al.  Content-based retrieval for human motion data , 2004, J. Vis. Commun. Image Represent..

[21]  Ken-ichi Anjyo,et al.  Fourier principles for emotion-based human figure animation , 1995, SIGGRAPH.

[22]  Harry Shum,et al.  Motion texture: a two-level statistical model for character motion synthesis , 2002, ACM Trans. Graph..

[23]  Tido Röder,et al.  EFFICIENT INDEXING AND RETRIEVAL OF MOTION CAPTURE DATA BASED ON ADAPTIVE SEGMENTATION , 2005 .

[24]  C. Karen Liu,et al.  Learning physics-based motion style with nonlinear inverse optimization , 2005, ACM Trans. Graph..

[25]  Stefan Carlsson,et al.  Recognizing and Tracking Human Action , 2002, ECCV.

[26]  Hans-Peter Seidel,et al.  Automatic Learning of Articulated Skeletons from 3D Marker Trajectories , 2006, ISVC.

[27]  Christoph Bregler,et al.  Motion capture assisted animation: texturing and synthesis , 2002, ACM Trans. Graph..

[28]  Jessica K. Hodgins,et al.  Automatic Joint Parameter Estimation from Magnetic Motion Capture Data , 2023, Graphics Interface.

[29]  Lance Williams,et al.  Motion signal processing , 1995, SIGGRAPH.

[30]  Tido Röder,et al.  Efficient content-based retrieval of motion capture data , 2005, SIGGRAPH 2005.

[31]  O. Faugeras Three-dimensional computer vision: a geometric viewpoint , 1993 .

[32]  Kari Pulli,et al.  Style translation for human motion , 2005, SIGGRAPH 2005.

[33]  Hui Gao,et al.  An expressive three-mode principal components model of human action style , 2003, Image Vis. Comput..

[34]  James M. Rehg,et al.  A data-driven approach to quantifying natural human motion , 2005, ACM Trans. Graph..

[35]  Aaron Hertzmann,et al.  Style machines , 2000, SIGGRAPH 2000.

[36]  Stefan Carlsson,et al.  Combinatorial Geometry for Shape Representation and Indexing , 1996, Object Representation in Computer Vision.

[37]  Michael F. Cohen,et al.  Verbs and Adverbs: Multidimensional Motion Interpolation , 1998, IEEE Computer Graphics and Applications.

[38]  Ling Guan,et al.  Quantifying and recognizing human movement patterns from monocular video Images-part I: a new framework for modeling human motion , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[39]  Frank Kurth,et al.  A unified approach to content-based and fault-tolerant music recognition , 2004, IEEE Transactions on Multimedia.

[40]  Ian H. Witten,et al.  Managing gigabytes 2nd edition , 1999 .

[41]  Ling Guan,et al.  Quantifying and recognizing human movement patterns from monocular video images-part II: applications to biometrics , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[42]  N. Troje Decomposing biological motion: a framework for analysis and synthesis of human gait patterns. , 2002, Journal of vision.

[43]  Stefan Carlsson,et al.  Order Structure, Correspondence, and Shape Based Categories , 1999, Shape, Contour and Grouping in Computer Vision.