The antimalarial resistome – finding new drug targets and their modes of action

[1]  P. Nordlund,et al.  Cellular thermal shift assay for the identification of drug–target interactions in the Plasmodium falciparum proteome , 2020, Nature Protocols.

[2]  Michael S. Behnke,et al.  Evolution of resistance in vitro reveals mechanisms of artemisinin activity in Toxoplasma gondii , 2019, Proceedings of the National Academy of Sciences.

[3]  N. Tajuddeen,et al.  Antiplasmodial natural products: an update , 2019, Malaria Journal.

[4]  E. Winzeler,et al.  Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery , 2019, Cell chemical biology.

[5]  J. Rayner,et al.  Genome-Scale Identification of Essential Metabolic Processes for Targeting the Plasmodium Liver Stage , 2019, Cell.

[6]  Kristian E. Swearingen,et al.  Transcriptomics and proteomics reveal two waves of translational repression during the maturation of malaria parasite sporozoites , 2019, Nature Communications.

[7]  F. Gamo,et al.  Identification of small molecules disrupting the ubiquitin proteasome system in malaria. , 2019, ACS infectious diseases.

[8]  E. Winzeler,et al.  Advances in omics-based methods to identify novel targets for malaria and other parasitic protozoan infections , 2019, Genome Medicine.

[9]  Hye-Sook Kim,et al.  Genomic and biological features of Plasmodium falciparum resistance against antimalarial endoperoxide N-89. , 2019, Gene.

[10]  A. Simeonov,et al.  High-Throughput Cellular Thermal Shift Assays in Research and Drug Discovery , 2019, SLAS discovery : advancing life sciences R & D.

[11]  M. Llinás,et al.  Antimalarial pantothenamide metabolites target acetyl–coenzyme A biosynthesis in Plasmodium falciparum , 2019, Science Translational Medicine.

[12]  R. Sinden,et al.  Fueling Open Innovation for Malaria Transmission-Blocking Drugs: Hundreds of Molecules Targeting Early Parasite Mosquito Stages , 2019, Front. Microbiol..

[13]  E. Winzeler,et al.  Validation of the protein kinase PfCLK3 as a multistage cross-species malarial drug target , 2019, Science.

[14]  J. Rayner,et al.  The Malaria Cell Atlas: Single parasite transcriptomes across the complete Plasmodium life cycle , 2019, Science.

[15]  D. Creek,et al.  Post-Genomic Approaches to Understanding Malaria Parasite Biology: Linking Genes to Biological Functions. , 2019, ACS infectious diseases.

[16]  Jake Baum,et al.  The antimalarial screening landscape—looking beyond the asexual blood stage , 2019, Current opinion in chemical biology.

[17]  Juan A. Bueren-Calabuig,et al.  Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis , 2019, Proceedings of the National Academy of Sciences.

[18]  E. Winzeler,et al.  Plasmodium Niemann-Pick type C1-related protein is a druggable target required for parasite membrane homeostasis , 2019, eLife.

[19]  P. Gilson,et al.  Proteomic analysis of Plasmodium falciparum histone deacetylase 1 complex proteins. , 2019, Experimental parasitology.

[20]  M. Schmid,et al.  Transcriptome analysis of Plasmodium berghei during exo-erythrocytic development , 2019, Malaria Journal.

[21]  P. Nordlund,et al.  Identifying purine nucleoside phosphorylase as the target of quinine using cellular thermal shift assay , 2019, Science Translational Medicine.

[22]  Manuel Llinás,et al.  Open-source discovery of chemical leads for next-generation chemoprotective antimalarials , 2018, Science.

[23]  H. Waldmann,et al.  Target Engagement of Small Molecules: Thermal Profiling Approaches on Different Levels. , 2018, Methods in molecular biology.

[24]  G. Drewes,et al.  Chemoproteomics and Chemical Probes for Target Discovery. , 2018, Trends in biotechnology.

[25]  L. Stojanovski,et al.  Pharmacological Validation of N-Myristoyltransferase as a Drug Target in Leishmania donovani , 2018, ACS infectious diseases.

[26]  Kristian E. Swearingen,et al.  Plasmodium Parasites Viewed through Proteomics. , 2018, Trends in parasitology.

[27]  E. Winzeler,et al.  Target Validation and Identification of Novel Boronate Inhibitors of the Plasmodium falciparum Proteasome , 2018, Journal of medicinal chemistry.

[28]  Özlem Tastan Bishop,et al.  Aminoacyl tRNA synthetases as malarial drug targets: a comparative bioinformatics study , 2018, Malaria Journal.

[29]  A. Burt,et al.  A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes , 2018, Nature Biotechnology.

[30]  E. Winzeler,et al.  A high throughput screen for next-generation leads targeting malaria parasite transmission , 2018, Nature Communications.

[31]  M. Laurens The Promise of a Malaria Vaccine-Are We Closer? , 2018, Annual review of microbiology.

[32]  R. Singh,et al.  Drug targets for resistant malaria: Historic to future perspectives. , 2018, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[33]  A. O. John Faculty Opinions recommendation of Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. , 2018 .

[34]  J. Rayner,et al.  Malaria Vaccines: Recent Advances and New Horizons , 2018, Cell host & microbe.

[35]  S. Kappe,et al.  A comprehensive model for assessment of liver stage therapies targeting Plasmodium vivax and Plasmodium falciparum , 2018, Nature Communications.

[36]  J. Lavandera,et al.  Functional screening of selective mitochondrial inhibitors of Plasmodium , 2018, International journal for parasitology. Drugs and drug resistance.

[37]  Maureen A. Carey,et al.  Influential Parameters for the Analysis of Intracellular Parasite Metabolomics , 2018, mSphere.

[38]  E. Winzeler,et al.  Using in Vitro Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery , 2018, ACS infectious diseases.

[39]  Alex B. Miller,et al.  A human monoclonal antibody prevents malaria infection and defines a new site of vulnerability on Plasmodium falciparum circumsporozoite protein , 2018, Nature Medicine.

[40]  Edward W. Tate,et al.  Development of a Photo-Cross-Linkable Diaminoquinazoline Inhibitor for Target Identification in Plasmodium falciparum. , 2018, ACS infectious diseases.

[41]  F. Gamo,et al.  Efforts Aimed To Reduce Attrition in Antimalarial Drug Discovery: A Systematic Evaluation of the Current Antimalarial Targets Portfolio. , 2018, ACS infectious diseases.

[42]  M. Llinás,et al.  Specific Inhibition of the Bifunctional Farnesyl/Geranylgeranyl Diphosphate Synthase in Malaria Parasites via a New Small-Molecule Binding Site. , 2017, Cell chemical biology.

[43]  S. Croft,et al.  A potent series targeting the malarial cGMP-dependent protein kinase clears infection and blocks transmission , 2017, Nature Communications.

[44]  David M. Shackleford,et al.  Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase , 2017, Science Translational Medicine.

[45]  A. Cowman,et al.  Malaria: Biology and Disease , 2016, Cell.

[46]  Manuel Llinás,et al.  Metabolomic Profiling of the Malaria Box Reveals Antimalarial Target Pathways , 2016, Antimicrobial Agents and Chemotherapy.

[47]  J. Wagner,et al.  Versatile control of Plasmodium falciparum gene expression with an inducible protein-RNA interaction , 2014, Nature Communications.

[48]  M. Ndiath Insecticides and Insecticide Resistance. , 2019, Methods in molecular biology.

[49]  Graham M. West,et al.  Emerging Methods in Chemoproteomics with Relevance to Drug Discovery. , 2017, Methods in molecular biology.