Opposite Particle Size Effect on Amorphous Calcium Carbonate Crystallization in Water and during Heating in Air

Calcium carbonate is a common constituent of many natural materials, such as shells and skeletons of marine animals. While it is well-documented that additives (organic and inorganic) modulate the crystallization of amorphous calcium carbonate (ACC), the effects of the intrinsic physicochemical characteristics of ACC, such as particle size, shape, and water content on the transformation to crystalline polymorphs, are still poorly understood. Here, we investigate the effect of particle size by preparing ACC nanoparticles with an average size ranging from ∼66 to ∼196 nm using a high-resolution titration setup. Our results show that the particle size determined the polymorph selection in solution; an increasing proportion of vaterite to calcite was observed with decreasing particle size. The polymorph selection was ascribed to a higher apparent solubility of ACC with decreasing particle size, a parameter from which we could determine the surface energy of ACC to be ∼0.33 J/m2. Upon heating, particle size sho...

[1]  S. Weiner,et al.  Particle Accretion Mechanism Underlies Biological Crystal Growth from an Amorphous Precursor Phase , 2014 .

[2]  Y. Kauffmann,et al.  Size Effect on the Short Range Order and the Crystallization of Nanosized Amorphous Alumina , 2014 .

[3]  B. Phillips,et al.  Structural Changes upon Dehydration of Amorphous Calcium Carbonate , 2014 .

[4]  H. Christenson,et al.  Dehydration and crystallization of amorphous calcium carbonate in solution and in air , 2014, Nature Communications.

[5]  K. Koepernik,et al.  Controlling size-induced phase transformations using chemically designed nanolaminates. , 2013, Angewandte Chemie.

[6]  Lester O. Hedges,et al.  Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals. , 2013, Nature materials.

[7]  M. Antonietti,et al.  Ethanol assisted synthesis of pure and stable amorphous calcium carbonate nanoparticles. , 2013, Chemical communications.

[8]  G. Waychunas,et al.  Pressure-induced polyamorphism and formation of 'aragonitic' amorphous calcium carbonate. , 2013, Angewandte Chemie.

[9]  S. Weiner,et al.  Calcite crystal growth by a solid-state transformation of stabilized amorphous calcium carbonate nanospheres in a hydrogel. , 2013, Angewandte Chemie.

[10]  S. Weiner,et al.  Biogenic Fish-gut Calcium Carbonate is a Stable Amorphous Phase in the Gilt-head Seabream, Sparus aurata , 2013, Scientific Reports.

[11]  Yuanzhi Tang,et al.  Characterization of Structure in Biogenic Amorphous Calcium Carbonate: Pair Distribution Function and Nuclear Magnetic Resonance Studies of Lobster Gastrolith , 2013 .

[12]  F. Meldrum,et al.  The Effect of Additives on Amorphous Calcium Carbonate (ACC): Janus Behavior in Solution and the Solid State , 2013 .

[13]  W. Tremel,et al.  Flexible Minerals: Self-Assembled Calcite Spicules with Extreme Bending Strength , 2013, Science.

[14]  P. van der Schoot,et al.  Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate , 2013, Nature Communications.

[15]  Pieter Bots,et al.  The role of pH and Mg on the stability and crystallization of amorphous calcium carbonate , 2012 .

[16]  G. Kaptay,et al.  On the size and shape dependence of the solubility of nano-particles in solutions. , 2012, International journal of pharmaceutics.

[17]  F. Nudelman,et al.  Think Positive: Phase Separation Enables a Positively Charged Additive to Induce Dramatic Changes in Calcium Carbonate Morphology , 2012 .

[18]  Wolfgang Wagermaier,et al.  Self-assembly of amorphous calcium carbonate microlens arrays , 2012, Nature Communications.

[19]  H. Christenson,et al.  Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate. , 2011, Angewandte Chemie.

[20]  A. Navrotsky,et al.  The energetics of nanophase calcite , 2011 .

[21]  A. Sagi,et al.  In situ molecular NMR picture of bioavailable calcium stabilized as amorphous CaCO3 biomineral in crayfish gastroliths , 2011, Proceedings of the National Academy of Sciences.

[22]  Samuel Shaw,et al.  The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. , 2011, Nanoscale.

[23]  F. Nudelman,et al.  Stabilization of amorphous calcium carbonate by controlling its particle size. , 2010, Nanoscale.

[24]  A. Navrotsky,et al.  Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate , 2010, Proceedings of the National Academy of Sciences.

[25]  A. Sagi,et al.  Stabilization of amorphous calcium carbonate by phosphate rich organic matrix proteins and by single phosphoamino acids. , 2010, Journal of structural biology.

[26]  S. Weiner,et al.  Role of Magnesium Ion in the Stabilization of Biogenic Amorphous Calcium Carbonate: A Structure−Function Investigation , 2010 .

[27]  Can Li,et al.  UV Raman Spectroscopic Study on TiO2. II. Effect of Nanoparticle Size on the Outer/Inner Phase Transformations , 2009 .

[28]  Helmut Cölfen,et al.  Stable Prenucleation Calcium Carbonate Clusters , 2008, Science.

[29]  L. Gower Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. , 2008, Chemical reviews.

[30]  Xiaoping Song,et al.  Size-dependent structure transformation from amorphous phase to crystal , 2008 .

[31]  J. Erez,et al.  Reciprocal Changes in Calcification of the Gastrolith and Cuticle During the Molt Cycle of the Red Claw Crayfish Cherax quadricarinatus , 2008, The Biological Bulletin.

[32]  S. Weiner,et al.  Asprich mollusk shell protein: in vitro experiments aimed at elucidating function in CaCO3 crystallization , 2007 .

[33]  J. Aizenberg,et al.  Calcium Carbonate Storage in Amorphous Form and Its Template-Induced Crystallization† , 2007 .

[34]  J. Rieger,et al.  Precursor structures in the crystallization/ precipitation processes of CaCO3 and control of particle formation by polyelectrolytes. , 2007, Faraday discussions.

[35]  S. Weiner,et al.  Sea Urchin Spine Calcite Forms via a Transient Amorphous Calcium Carbonate Phase , 2004, Science.

[36]  A. Navrotsky Energetic clues to pathways to biomineralization: precursors, clusters, and nanoparticles. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  G. Wegner,et al.  Amorphous Calcium Carbonate: Synthesis and Potential Intermediate in Biomineralization , 2004 .

[38]  Woojun Kim,et al.  Polymorphic Change of Calcium Carbonate during Reaction Crystallization in a Batch Reactor , 2004 .

[39]  Steve Weiner,et al.  Taking Advantage of Disorder: Amorphous Calcium Carbonate and Its Roles in Biomineralization , 2003 .

[40]  S. Weiner,et al.  Biologically Formed Amorphous Calcium Carbonate , 2003, Connective tissue research.

[41]  P. Panine,et al.  Formation and Growth of Amorphous Colloidal CaCO3 Precursor Particles as Detected by Time-Resolved SAXS , 2002 .

[42]  J. Aizenberg,et al.  Factors involved in the formation of amorphous and crystalline calcium carbonate: a study of an ascidian skeleton. , 2002, Journal of the American Chemical Society.

[43]  N. Koga,et al.  Crystallization of amorphous calcium carbonate , 1998 .

[44]  J. Banfield,et al.  Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2 , 1997 .

[45]  M. Järvinen Application of symmetrized harmonics expansion to correction of the preferred orientation effect , 1993 .

[46]  Takeshi Ogino,et al.  The formation and transformation mechanism of calcium carbonate in water , 1987 .

[47]  O. Söhnel,et al.  Interfacial tensions electrolyte crystal-aqueous solution, from nucleation data , 1971 .

[48]  G. B. Alexader The Effect of Particle Size on the Solubility of Amorphous Silica in Water , 1957 .

[49]  M. L. Dundon,et al.  THE SOLUBILITY AND SURFACE ENERGY OF CALCIUM SULFATE , 1923 .

[50]  F. Meldrum,et al.  Solid state crystallization of amorphous calcium carbonate nanoparticles leads to polymorph selectivity , 2013 .

[51]  W. Habraken The integration of ion potentiometric measurements with chemical, structural, and morphological analysis to follow mineralization reactions in solution. , 2013, Methods in enzymology.

[52]  J. Clarkson,et al.  Role of metastable phases in the spontaneous precipitation of calcium carbonate , 1992 .