A phase-field/gradient damage model for brittle fracture in elastic–plastic solids

Abstract The formulation of a phase-field continuum theory for brittle fracture in elastic–plastic solids and its computational implementation are presented in this contribution. The theory is based on a virtual-power formulation in which two additional and independent kinematical descriptors are introduced, namely the phase-field and the accumulated plastic strain. Further, it incorporates irreversibility of both phase-field and plastic strain evolutions by introducing suitable constraints and by carefully heeding the influence of those constraints on the kinetics underlying microstructural changes associated with plasticity and fracture. The numerical implementation employs the finite-element method for spatial discretization and a splitting scheme with sub-stepping for the time integration. To illustrate its potential utility, we apply the model to a number of well known linear, as well as non-linear, fracture mechanics problems. The described phase-field model, coupled with plasticity, provides a feasible technique to analyzing crack initiation and the subsequent crack growth resistance only if the length scale parameter included in the phase-field model is finite and treated as a material parameter which should be properly characterized.

[1]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[2]  Stefano Mariani,et al.  An extended FE strategy for transition from continuum damage to mode I cohesive crack propagation , 2007 .

[3]  Alain Karma,et al.  Unsteady crack motion and branching in a phase-field model of brittle fracture. , 2004, Physical Review Letters.

[4]  Angelo Simone,et al.  Continuous-discontinuous modeling of failure , 2007 .

[5]  A. Huespe,et al.  From continuum mechanics to fracture mechanics: the strong discontinuity approach , 2002 .

[6]  Thomas Seelig,et al.  Fracture Mechanics: With an Introduction to Micromechanics , 2006 .

[7]  E. Stein,et al.  Structural changes in elastoplastic material , 2000 .

[8]  Gianfranco Capriz,et al.  Continua with Microstructure , 1989 .

[9]  M. Gurtin,et al.  The Mechanics and Thermodynamics of Continua , 2010 .

[10]  Ralf Müller,et al.  A continuum phase field model for fracture , 2010 .

[11]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[12]  Fredrik Larsson,et al.  On the role of material dissipation for the crack-driving force , 2010 .

[13]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[14]  K. Hackl,et al.  Dynamical evolution of fracture process region in ductile materials , 2009 .

[15]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[16]  Elias C. Aifantis,et al.  The physics of plastic deformation , 1987 .

[17]  A. Kfouri Characteristic crack-tip distances in fracture criteria: Is crack propagation discontinuous? , 2008 .

[18]  Jean Lemaitre,et al.  Local approach of fracture , 1986 .

[19]  V. Levitas Structural changes without stable intermediate state in inelastic material. Part II. Applications to displacive and diffusional–displacive phase transformations, strain-induced chemical reactions and ductile fracture , 2000 .

[20]  John R. Rice,et al.  Mechanics of quasi-static crack growth , 1978 .

[21]  S. Xia,et al.  A nonlocal damage theory , 1987 .

[22]  A. J. McEvily,et al.  Fracture of Structural Materials , 1967 .

[23]  John R. Rice,et al.  ON THE RELATIONSHIP BETWEEN CRITICAL TENSILE STRESS AND FRACTURE TOUGHNESS IN MILD STEEL , 1973 .

[24]  J. C. Simo,et al.  An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids , 1993 .

[25]  Morton E. Gurtin,et al.  Configurational forces and the basic laws for crack propagation , 1996 .

[26]  Rhj Ron Peerlings,et al.  Gradient enhanced damage for quasi-brittle materials , 1996 .

[27]  Cv Clemens Verhoosel,et al.  A phase‐field model for cohesive fracture , 2013 .

[28]  Robert M. McMeeking,et al.  Finite deformation analysis of crack-tip opening in elastic-plastic materials and implications for fracture , 1977 .

[29]  P. Steinmann,et al.  Theoretical and computational aspects of a thermodynamically consistent framework for geometrically linear gradient damage , 2001 .

[30]  Eliot Fried,et al.  Sharp-crack limit of a phase-field model for brittle fracture , 2013 .

[31]  Nicolas Cordero,et al.  Micromorphic approach to single crystal plasticity and damage , 2011 .

[32]  Vincent Hakim,et al.  Laws of crack motion and phase-field models of fracture , 2008, 0806.0593.

[33]  K. Saanouni,et al.  Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects , 2013 .

[34]  B. Nedjar,et al.  Elastoplastic-damage modelling including the gradient of damage: formulation and computational aspects , 2001 .

[35]  K. J. Miller,et al.  Crack Separation Energy Rates in Elastic-Plastic Fracture Mechanics , 1976 .

[36]  Validación Experimental de un Modelo de Campo de Fase para Simular Fractura Frágil , 2013 .

[37]  Ted Belytschko,et al.  On XFEM applications to dislocations and interfaces , 2007 .

[38]  A. Karma,et al.  Phase field modeling of crack propagation , 2010, 1001.4350.

[39]  Ingo Scheider,et al.  3.03 – Computational Aspects of Nonlinear Fracture Mechanics , 2003 .

[40]  A. Huespe,et al.  A finite thickness band method for ductile fracture analysis , 2009 .

[41]  Morton E. Gurtin,et al.  Continuum theory of thermally induced phase transitions based on an order parameter , 1993 .

[42]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[43]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[44]  Herbert Levine,et al.  Dynamic instabilities of fracture under biaxial strain using a phase field model. , 2004, Physical review letters.

[45]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[46]  Aranson,et al.  Continuum field description of crack propagation , 2000, Physical review letters.

[47]  M. Frémond,et al.  Damage, gradient of damage and principle of virtual power , 1996 .

[48]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[49]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[50]  Otmar Kolednik,et al.  J-integral and crack driving force in elastic–plastic materials , 2008 .

[51]  Pablo J. Sánchez,et al.  A finite strain, finite band method for modeling ductile fracture , 2012 .