A NOTE ON GORENSTEIN GLOBAL DIMENSION OF PULLBACK RINGS

The study of global dimension of pullback rings has been subject of several interesting works and has been served to solve many open problems. In this paper, we attempt to extend some results on the global dimension of pullback rings to the Gorenstein setting. As a particular case we discuss the transfer of the notion of Gorenstein rings in some particular pullback constructions. Mathematics Subject Classification (2000): Primary: 16E05, 16E10, 16E65, 13D05, 13D07, Secondary: 13A15

[1]  D. Bennis,et al.  A GENERALIZATION OF STRONGLY GORENSTEIN PROJECTIVE MODULES , 2008, 0812.2566.

[2]  D. Bennis,et al.  Gorenstein Global Dimensions and Cotorsion Dimension of Rings , 2007, 0712.0123.

[3]  D. Bennis,et al.  Global Gorenstein dimensions of polynomial rings and of direct product of rings , 2007, 0712.0126.

[4]  Zhao Ying-cai On Gorenstein Flat Modules , 2007 .

[5]  D. Bennis,et al.  Global Gorenstein dimensions , 2006, math/0611358.

[6]  Nanqing Ding,et al.  The Cotorsion Dimension of Modules and Rings , 2006 .

[7]  Overtoun M. G. Jenda,et al.  DUALIZING MODULES AND n-PERFECT RINGS , 2005, Proceedings of the Edinburgh Mathematical Society.

[8]  H. Holm,et al.  Gorenstein homological algebra , 2004 .

[9]  W. K. Nicholson,et al.  Quasi-Frobenius Rings: List of Symbols , 2003 .

[10]  A. Mimouni TW-domains and Strong Mori domains , 2003 .

[11]  Overtoun M. G. Jenda,et al.  8 Relative Homological Algebra and Balance , 2000 .

[12]  Jianlong Chen,et al.  Coherent rings with finite self-FP-injective dimension , 1996 .

[13]  Overtoun M. G. Jenda,et al.  Gorenstein injective and projective modules , 1995 .

[14]  Overtoun M. G. Jenda,et al.  On gorenstein injective modules , 1993 .

[15]  P. Cahen ConstruciotnB, I, D et anneaux localement ou residullement de Jaffard , 1990 .

[16]  Sarah Glaz,et al.  Commutative Coherent Rings , 1989 .

[17]  J. Kuzmanovich,et al.  On the global dimension of fibre products. , 1988 .

[18]  P. Vámos,et al.  Injective Modules over Pullbacks , 1985 .

[19]  M. Fontana Topologically defined classes of commutative rings , 1980 .

[20]  J. Rotman An Introduction to Homological Algebra , 1979 .

[21]  岩永 恭雄 On rings with finite self-injective dimension , 1979 .

[22]  B. Greenberg Coherence in Cartesian squares , 1978 .

[23]  Wolmer V. Vasconcelos,et al.  The rings of dimension two , 1976 .

[24]  D. Dobbs On the Global Dimensions of D+M , 1975, Canadian mathematical bulletin.

[25]  B. Greenberg Global dimension of cartesian squares , 1974 .

[26]  Eduardo Bastida,et al.  Overrings and divisorial ideals of rings of the form $D+M$. , 1973 .

[27]  John Milnor,et al.  Introduction to algebraic K-theory , 1971 .

[28]  M. Bridger,et al.  Stable Module Theory , 1969 .

[29]  W. Heinzer Integral domains in which each non‐zero ideal is divisorial , 1968 .

[30]  Christian Peskine,et al.  Anneaux de gorenstein, et torsion en algébre commutative , 1967 .

[31]  Hyman Bass,et al.  On the ubiquity of Gorenstein rings , 1963 .