An efficient 4‐node 24 D.O.F. thick shell finite element with 5‐point quadrature

A 4‐node flat shell quadrilateral finite element with 6 degrees of freedom per node, denoted QC5D‐SA, is presented. The element is an assembly of a modification of the drilling degree of freedom membrane presented by Ibrahimbegovic et al., and the assumed strain plate element presented by Bathe and Dvorkin. The part of the stiffness matrix associated with in—plane displacements and rotations is integrated over the element domain by a modified 5‐point reduced integration scheme, resulting in greater efficiency without the sacrifice of rank sufficiency. The scheme produces a soft higher order deformation mode which increases numerical accuracy. A large number of standard benchmark problems are analyzed. Some examples show that the effectiveness of a previously proposed “membrane locking correction” technique is significantly reduced when employing distorted elements. However, the element is shown to be generally accurate and in many cases superior to existing elements.

[1]  D. Allman A compatible triangular element including vertex rotations for plane elasticity analysis , 1984 .

[2]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects , 1989 .

[3]  Robert D. Cook,et al.  On the Allman triangle and a related quadrilateral element , 1986 .

[4]  Sergio Idelsohn,et al.  On the use of deep, shallow or flat shell finite elements for the analysis of thin shell structures , 1981 .

[5]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[6]  Robert L. Harder,et al.  A refined four-noded membrane element with rotational degrees of freedom , 1988 .

[7]  O. C. Zienkiewicz,et al.  The patch test—a condition for assessing FEM convergence , 1986 .

[8]  Edward L. Wilson,et al.  A unified formulation for triangular and quadrilateral flat shell finite elements with six nodal degrees of freedom , 1991 .

[9]  Marc Hoit,et al.  A computer adaptive language for the development of structural analysis programs , 1984 .

[10]  D. J. Allman,et al.  Evaluation of the constant strain triangle with drilling rotations , 1988 .

[11]  T. Belytschko,et al.  A flat triangular shell element with improved membrane interpolation , 1985 .

[12]  Klaus-Jürgen Bathe,et al.  A study of three‐node triangular plate bending elements , 1980 .

[13]  Adnan Ibrahimbegovic,et al.  Plate quadrilateral finite element with incompatible modes , 1992 .

[14]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[15]  E. Reissner A note on variational principles in elasticity , 1965 .

[16]  François Frey,et al.  A four node Marguerre element for non‐linear shell analysis , 1986 .

[17]  Richard H. Macneal,et al.  Derivation of element stiffness matrices by assumed strain distributions , 1982 .

[18]  Edward L. Wilson,et al.  A 4‐node quadrilateral membrane element with in‐plane vertex rotations and modified reduced quadrature , 1989 .

[19]  T. Belytschko,et al.  Efficient implementation of quadrilaterals with high coarse-mesh accuracy , 1986 .

[20]  Carlos A. Felippa,et al.  A triangular membrane element with rotational degrees of freedom , 1985 .

[21]  H. Parisch,et al.  An investigation of a finite rotation four node assumed strain shell element , 1991 .

[22]  Edward L. Wilson,et al.  A robust quadrilateral membrane finite element with drilling degrees of freedom , 1990 .

[23]  H. Dovey EXTENSION OF THREE DIMENSIONAL ANALYSIS TO SHELL STRUCTURES USING THE FINITE ELEMENT IDEALIZATION , 1974 .

[24]  Robert D. Cook,et al.  A plane hybrid element with rotational d.o.f. and adjustable stiffness , 1987 .

[25]  Ted Belytschko,et al.  On flexurally superconvergent four-node quadrilaterals , 1987 .

[26]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[27]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[28]  D. Malkus,et al.  Mixed finite element methods—reduced and selective integration techniques: a unification of concepts , 1990 .

[29]  D. Allman A quadrilateral finite element including vertex rotations for plane elasticity analysis , 1988 .

[30]  F. Brezzi,et al.  On drilling degrees of freedom , 1989 .