In Situ Two-Step Plasma Enhanced Atomic Layer Deposition of Ru/RuNx Barriers for Seedless Copper Electroplating

The study prepared Ru/RuNx bilayer barriers on mesoporous SiO2 (mp-SiO2) dielectric layers for direct Cu electroplating applications using in situ two-step plasma-enhanced atomic chemical vapor deposition (PEALD). For the 5 nm thick Ru/RuNx bilayer deposited at 200 C, obvious thermal decomposition begins at temperatures lower than 400 C. Copper can be successfully electroplated on the as-deposited Ru/RuNx bilayer, and the Cu/Ru/RuNx/mp-SiO2 film stack can withstand thermal treatment at temperatures up to 500 C without significant physical and chemical degradations according to TEM and SIMS analyses. The study shows that the electroplated Cu layer behaves like a passivation layer that improves the thermal stability of the Ru/RuNx barrier during the thermal annealing. Pull-off tensile test shows that interfaces in the Cu/Ru/RuNx/mp-SiO2 film stack have good adhesion strength, but delamination occurs at the interface between the Ru/RuNx bilayer and the mp-SiO2 layer at 600 C, resulting in Cu and Ru diffusion into the dielectric layer. The study has demonstrated that the PEALD Ru/RuNx bilayer structure prepared using the in situ two-step approach is suitable for the seedless Cu electroplating process in nanometer scale interconnect technology. VC 2011 The Electrochemical Society. [DOI: 10.1149/1.3554734] All rights reserved.

[1]  D. Perng,et al.  Amorphous RuW film as a diffusion barrier for advanced Cu metallization , 2010 .

[2]  D. Edelstein,et al.  Characterization of “Ultrathin-Cu”/Ru(Ta)/TaN Liner Stack for Copper Interconnects , 2010, IEEE Electron Device Letters.

[3]  H. Teng,et al.  Enhancement of Electrochemical Capacitance Using Ni-Modified Carbon Nanofibers Prepared by a Hydrothermal Process , 2010 .

[4]  D. Perng,et al.  Thermal and Electrical Properties of PVD Ru(P) Film as Cu Diffusion Barrier , 2010 .

[5]  D. Perng,et al.  Ru/WCoCN as a seedless Cu barrier system for advanced Cu metallization , 2009 .

[6]  C. Chang,et al.  Pore sealing of mesoporous silica low-k dielectrics by oxygen and argon plasma treatments , 2009 .

[7]  Seong-Jun Jeong,et al.  Low Temperature Two-Step Atomic Layer Deposition of Tantalum Nitride for Cu Diffusion Barrier , 2009 .

[8]  M. J. Kim,et al.  A novel thermally-stable zirconium amidinate ALD precursor for ZrO2 thin films , 2009 .

[9]  Yangdo Kim,et al.  Barrier Characteristics of ZrN Films Deposited by Remote Plasma-Enhanced Atomic Layer Deposition Using Tetrakis(diethylamino)zirconium Precursor , 2007 .

[10]  A. V. Vairagar,et al.  Microstructural Evolution of Annealed Ruthenium–Nitrogen Films , 2007 .

[11]  T. Moffat,et al.  Osmium Barriers for Direct Copper Electrodeposition in Damascene Processing , 2006 .

[12]  S. G. Mhaisalkar,et al.  Effects of dissolved nitrogen in improving barrier properties of ruthenium , 2006 .

[13]  M. J. Kim,et al.  5 nm Ruthenium Thin Film as a Directly Plateable Copper Diffusion Barrier , 2005 .

[14]  Se‐Hun Kwon,et al.  PEALD of a Ruthenium Adhesion Layer for Copper Interconnects , 2004 .

[15]  M. J. Kim,et al.  Diffusion Studies of Copper on Ruthenium Thin Film A Plateable Copper Diffusion Barrier , 2004 .

[16]  C. Kenway-Jackson,et al.  Secondary ion mass spectrometry , 1984 .

[17]  A. Benninghoven,et al.  Secondary ion mass spectrometry : SIMS V : proceedings of the fifth international conference, Washington, DC, September 30-October 4, 1985 , 1986 .