A New Approach to Range-only SLAM for Wireless Sensor Networks

Range sensor s tendto frustrateestimator s relyingupon linearization techniques. Such approximationsoften lead to filter divergence, asdemonstr atedin [1, 2]. To address theseshortcomings, weoffer a new approach to range-only simultaneouslocalizationandmapping(SLAM)for usein robotaugmentedwirelesssensornetworks.Our approach findsits rootsin robustestimation,employinganunknownbut-boundederror modelfor range measur ements.However, it alsoleveragesrecentadvancesin convex optimization theory to provide a framework suitablefor real-time systems. It offers several advantages over alternateapproaches,to includeconvergenceand performanceguarantees,as well as resistanceto certain measur ementoutliers. In this paper, wefirst extendour previousresultsin cooperative localization [3] to the range-only SLAM problemthroughsemidefiniteprogrammingtechniques.Wethen demonstr ate localization performancein the presenceof multi-path and signal attenuationerrors associatedwith WSNrangesensor s. Lastly, weinvestigateconvex approximationtechniquesfor improving localizationperformance. Samplesimulationsare providedto supportall results.

[1]  Fred C. Schweppe,et al.  Uncertain dynamic systems , 1973 .

[2]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[3]  Wolfram Burgard,et al.  A Probabilistic Approach to Collaborative Multi-Robot Localization , 2000, Auton. Robots.

[4]  Mani B. Srivastava,et al.  Dynamic fine-grained localization in Ad-Hoc networks of sensors , 2001, MobiCom '01.

[5]  J. Nemeroff,et al.  Application of sensor network communications , 2001, 2001 MILCOM Proceedings Communications for Network-Centric Operations: Creating the Information Force (Cat. No.01CH37277).

[6]  L. El Ghaoui,et al.  Convex position estimation in wireless sensor networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[7]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[8]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[9]  Deborah Estrin,et al.  Highly-resilient, energy-efficient multipath routing in wireless sensor networks , 2001, MOCO.

[10]  Jan M. Rabaey,et al.  Robust Positioning Algorithms for Distributed Ad-Hoc Wireless Sensor Networks , 2002, USENIX Annual Technical Conference, General Track.

[11]  Ian F. Akyildiz,et al.  Sensor Networks , 2002, Encyclopedia of GIS.

[12]  Camillo J. Taylor,et al.  A bounded uncertainty approach to multi-robot localization , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[13]  John J. Leonard,et al.  Pure range-only sub-sea SLAM , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[14]  Sanjiv Singh,et al.  Experimental results in range-only localization with radio , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).