Effective focused retrieval by exploiting query context and document structure

The classic IR model of the search process consists of three elements: query, documents and search results. A user looking to fulfil an information need formulates a query usually consisting of a small set of keywords summarising the information need. The goal of an IR system is to retrieve documents containing information which might be useful or relevant to the user. Throughout the search process there is a loss of focus, because keyword queries entered by users often do not suitably summarise their complex information needs, and IR systems do not sufficiently interpret the contents of documents, leading to result lists containing irrelevant and redundant information. The main research objective of this thesis is to exploit query context and document structure to provide for more focused retrieval. The short keyword query used as input to the retrieval system can be supplemented with topic categories from structured Web resources such as DMOZ and Wikipedia. Topic categories can be used as query context to retrieve documents that are not only relevant to the query but also belong to a relevant topic category. Category information is especially useful for the task of entity ranking where the user is searching for a certain type of entity such as companies or persons. Category information can help to improve the search results by promoting in the ranking pages belonging to relevant topic categories, or categories similar to the relevant categories. By following external links and searching for the retrieved Wikipedia entities in a general Web collection, we can also exploit the structure of Wikipedia to rank entities on the general Web. Wikipedia, in contrast to the general Web, does not contain much redundant information. This absence of redundant information can be exploited by using Wikipedia as a pivot to search the general Web. A typical query returns thousands or millions of documents, but searchers hardly ever look beyond the first result page. Since space on the result page is limited, we can show only a few documents in the result list. Word clouds can be used to summarise groups of documents into a set of keywords which allows users to quickly get a grasp on the underlying data. Instead of using user-assigned tags we generate word clouds from the textual contents of documents themselves as well as the anchor text ofWeb documents. Improvements over word clouds that are created using simple term frequency counting include using a parsimonious term weighting scheme, including bigrams and biasing the word cloud towards the query. We find that word clouds can to a certain degree quickly convey the topic and relevance of a set of search results. Available online at: http://dare.uva.nl/record/39569.

[1]  Mounia Lalmas,et al.  A survey on the use of relevance feedback for information access systems , 2003, The Knowledge Engineering Review.

[2]  Ralf Krestel,et al.  Why finding entities in Wikipedia is difficult, sometimes , 2010, Information Retrieval.

[3]  Georgia Koutrika,et al.  Data clouds: summarizing keyword search results over structured data , 2009, EDBT '09.

[4]  Charles L. A. Clarke,et al.  Novelty and diversity in information retrieval evaluation , 2008, SIGIR '08.

[5]  Hugo Zaragoza,et al.  Inferring the most important types of a query: a semantic approach , 2008, SIGIR '08.

[6]  M. de Rijke,et al.  Determining Expert Profiles (With an Application to Expert Finding) , 2007, IJCAI.

[7]  Fernando Luiz Koch,et al.  An Agent-Based Model for the Development of Intelligent Mobile Services , 2009 .

[8]  Valentin Jijkoun,et al.  Data-driven type checking in open domain question answering , 2007, J. Appl. Log..

[9]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[10]  José Janssen,et al.  Paving the Way for Lifelong Learning. Facilitating competence development through a learning path specification , 2010 .

[11]  Thilo Götz,et al.  Design and implementation of the UIMA Common Analysis System , 2004, IBM Syst. J..

[12]  Ingrid Hsieh-Yee,et al.  Effects of Search Experience and Subject Knowledge on the Search Tactics of Novice and Experienced Searchers , 1993, J. Am. Soc. Inf. Sci..

[13]  Gianluca Demartini,et al.  Overview of the INEX 2009 Entity Ranking Track , 2009, INEX.

[14]  X. Mao Airport under Control : Multi-agent scheduling for airport ground handling , 2011 .

[15]  Ronald Poppe,et al.  Discriminative vision-based recovery and recognition of human motion , 2009 .

[16]  Mark A. Rosso User-based identification of Web genres , 2008, J. Assoc. Inf. Sci. Technol..

[17]  Lyle H. Ungar,et al.  Web-scale named entity recognition , 2008, CIKM '08.

[18]  Taher H. Haveliwala Topic-sensitive PageRank , 2002, IEEE Trans. Knowl. Data Eng..

[19]  Wessel Kraaij,et al.  MeSH Up: effective MeSH text classification for improved document retrieval , 2009, Bioinform..

[20]  W. Bruce Croft,et al.  Indri : A language-model based search engine for complex queries ( extended version ) , 2005 .

[21]  Djoerd Hiemstra,et al.  Parsimonious language models for information retrieval , 2004, SIGIR '04.

[22]  Jasper Kaizer,et al.  AquaBrowser Library: Search, Discover, Refine , 2005 .

[23]  M. de Rijke,et al.  Category-Based Query Modeling for Entity Search , 2010, ECIR.

[24]  Maarten P. D. Schadd Selective search in games of different complexity , 2011 .

[25]  M. E. Maron,et al.  On Relevance, Probabilistic Indexing and Information Retrieval , 1960, JACM.

[26]  Mark Sanderson,et al.  Advantages of query biased summaries in information retrieval , 1998, SIGIR '98.

[27]  Gail E. Kaiser,et al.  DOM-based content extraction of HTML documents , 2003, WWW '03.

[28]  M. de Rijke,et al.  Learning Semantic Query Suggestions , 2009, SEMWEB.

[29]  Christian Glahn,et al.  Contextual support of social engagement and reflection on the Web , 2009 .

[30]  Shumeet Baluja,et al.  A large scale study of wireless search behavior: Google mobile search , 2006, CHI.

[31]  Jimmy J. Lin,et al.  Overview of the TREC 2007 Question Answering Track , 2008, TREC.

[32]  Jimmy Carter,et al.  An Exploration of Entity Models , Collective Classification and Relation Description , 2004 .

[33]  L. Azzopardi,et al.  Topic based language models for ad hoc information retrieval , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[34]  James Allan,et al.  An Exploration of Entity Models, Collective Classification and Relation Description , 2004 .

[35]  K. Schulz,et al.  Minimal models in semantics and pragmatics : free choice, exhaustivity, and conditionals , 2007 .

[36]  David Hawking,et al.  Overview of the TREC 2003 Web Track , 2003, TREC.

[37]  Ben Shneiderman,et al.  From Keyword Search to Exploration: Designing Future Search Interfaces for the Web , 2010, Found. Trends Web Sci..

[38]  Robert Krovetz,et al.  Viewing morphology as an inference process , 1993, Artif. Intell..

[39]  Djoerd Hiemstra,et al.  How Different Are Language Models andWord Clouds? , 2010, ECIR.

[40]  Syed Waqar Jaffry,et al.  Analysis and Validation of Models for Trust Dynamics , 2011 .

[41]  Junyu Niu,et al.  A Multiple-Stage Framework for Related Entity Finding: FDWIM at TREC 2010 Entity Track , 2010, TREC.

[42]  Marijn Koolen,et al.  The meaning of structure: the value of link evidence for information retrieval , 2011, SIGF.

[43]  Karen Spärck Jones A statistical interpretation of term specificity and its application in retrieval , 2021, J. Documentation.

[44]  Andrew Trotman,et al.  Overview of the INEX 2008 Ad Hoc Track , 2008, INEX.

[45]  Pavel Serdyukov,et al.  Search for expertise : going beyond direct evidence , 2009 .

[46]  Simone Paolo Ponzetto,et al.  WikiRelate! Computing Semantic Relatedness Using Wikipedia , 2006, AAAI.

[47]  Jaap Kamps,et al.  Improving information access by relevance and topical feedback , 2008 .

[48]  Benjamin M. Good,et al.  Tag clouds for summarizing web search results , 2007, WWW '07.

[49]  W. Bruce Croft,et al.  Ranking using multiple document types in desktop search , 2010, SIGIR '10.

[50]  Marius Pasca,et al.  Weakly-supervised discovery of named entities using web search queries , 2007, CIKM '07.

[51]  Amanda Spink,et al.  Real life, real users, and real needs: a study and analysis of user queries on the web , 2000, Inf. Process. Manag..

[52]  John D. Lafferty,et al.  A study of smoothing methods for language models applied to Ad Hoc information retrieval , 2001, SIGIR '01.

[53]  J. Gratch,et al.  Virtual Agents for Human Communication : Emotion Regulation and Involvement-Distance Trade-Offs in Embodied Conversational Agents and Robots , 2011 .

[54]  Ivo Swartjes Whose story is it anyway? How improv informs agency and authorship of emergent narrative , 2010 .

[55]  Ying Zhang,et al.  XRPC: efficient distributed query processing on heterogeneous XQuery engines , 2010 .

[56]  Krisztian Balog,et al.  People search in the enterprise , 2007, SIGF.

[57]  Hendrik Aleven Navigation Support for Learners in Informal Learning Networks , 2010 .

[58]  Parikshit Sondhi,et al.  Using query context models to construct topical search engines , 2010, IIiX.

[59]  Georgia Koutrika,et al.  On the selection of tags for tag clouds , 2011, WSDM '11.

[60]  Gjergji Kasneci,et al.  YAWN: A Semantically Annotated Wikipedia XML Corpus , 2007, BTW.

[61]  Maarten de Rijke,et al.  Combining Term-Based and Category-Based Representations for Entity Search , 2009, INEX.

[62]  Donna K. Harman,et al.  How effective is suffixing? , 1991, J. Am. Soc. Inf. Sci..

[63]  Paul B. Kantor,et al.  A study of information seeking and retrieving. II. Users, questions, and effectiveness , 1988, J. Am. Soc. Inf. Sci..

[64]  Chris Buckley,et al.  Relevance Feedback Track Overview: TREC 2008 , 2008, TREC.

[65]  Min Song,et al.  Keyphrase extraction-based query expansion in digital libraries , 2006, Proceedings of the 6th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL '06).

[66]  Sanda M. Harabagiu,et al.  Performance issues and error analysis in an open-domain question answering system , 2003, TOIS.

[67]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[68]  Michael Cardew-Hall,et al.  The folksonomy tag cloud: when is it useful? , 2008, J. Inf. Sci..

[69]  Maarten Marx,et al.  Focused retrieval and result aggregation with political data , 2010, Information Retrieval.

[70]  R. G. Santana Tapia,et al.  Assessing business-IT alignment in networked organizations , 2009 .

[71]  Djoerd Hiemstra,et al.  Structured Document Retrieval, Multimedia Retrieval, and Entity Ranking Using PF/Tijah , 2008, INEX.

[72]  I. van de Weerd,et al.  Advancing in software product management: An incremental method engineering approach , 2009 .

[73]  G. F. Siddiqui Integrative Modeling of Emotions in Virtual Agents , 2010 .

[74]  Amanda Spink,et al.  Web searcher interaction with the Dogpile.com metasearch engine , 2007, J. Assoc. Inf. Sci. Technol..

[75]  P. van Kranenburg,et al.  A Computational Approach to Content-Based Retrieval of Folk Song Melodies , 2010 .

[76]  Susan T. Dumais,et al.  The vocabulary problem in human-system communication , 1987, CACM.

[77]  Bob van der Vecht,et al.  Adjustable Autonomy: Controling Influences on Decision Making , 2009 .

[78]  Jaap Kamps,et al.  Exploiting the category structure of Wikipedia for entity ranking , 2013, Artif. Intell..

[79]  Martin F. Porter,et al.  An algorithm for suffix stripping , 1997, Program.

[80]  W. Bruce Croft,et al.  Proximity-based document representation for named entity retrieval , 2007, CIKM '07.

[81]  Djoerd Hiemstra,et al.  A Linguistically Motivated Probabilistic Model of Information Retrieval , 1998, ECDL.

[82]  Mary Czerwinski,et al.  FaThumb: a facet-based interface for mobile search , 2006, CHI.

[83]  John D. Lafferty,et al.  Model-based feedback in the language modeling approach to information retrieval , 2001, CIKM '01.

[84]  Djoerd Hiemstra,et al.  Using language models for information retrieval , 2001 .

[85]  P. Vitányi,et al.  Minimum Description Length Model Selection - Problems and Extensions , 2001 .

[86]  Paul Rayson,et al.  Comparing Corpora using Frequency Profiling , 2000, Proceedings of the workshop on Comparing corpora -.

[87]  Alia Amin,et al.  Understanding and supporting information seeking tasks across multiple sources , 2010 .

[88]  Marti A. Hearst,et al.  Scatter/gather browsing communicates the topic structure of a very large text collection , 1996, CHI.

[89]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[90]  Gianluca Demartini,et al.  Overview of the INEX 2008 Entity Ranking Track , 2009, INEX.

[91]  Andrew Trotman,et al.  Overview of the INEX 2007 Ad Hoc Track , 2008, INEX.

[92]  Yong Yu,et al.  Optimizing web search using social annotations , 2007, WWW '07.

[93]  Gerard Salton,et al.  Improving retrieval performance by relevance feedback , 1997, J. Am. Soc. Inf. Sci..

[94]  Peter D. Turney Coherent Keyphrase Extraction via Web Mining , 2003, IJCAI.

[95]  Hans Peter Luhn,et al.  A Statistical Approach to Mechanized Encoding and Searching of Literary Information , 1957, IBM J. Res. Dev..

[96]  Virginia N. L. Franqueira,et al.  Finding multi-step attacks in computer networks using heuristic search and mobile ambients , 2009 .

[97]  Jaap Kamps,et al.  Word Clouds of Multiple Search Results , 2011, IRFC.

[98]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[99]  Wei-Ying Ma,et al.  Web object retrieval , 2007, WWW '07.

[100]  Ellen M. Voorhees,et al.  Query expansion using lexical-semantic relations , 1994, SIGIR '94.

[101]  M. E. Counihan,et al.  Looking for logic in all the wrong places: An investigation of language, literacy and logic in reasoning , 2008 .

[102]  Emine Yilmaz,et al.  A simple and efficient sampling method for estimating AP and NDCG , 2008, SIGIR '08.

[103]  Michiel Hildebrand End-user support for access to heterogeneous linked data , 2010 .

[104]  Yi-fang Brook Wu,et al.  Domain-specific keyphrase extraction , 2005, CIKM '05.

[105]  Fabian M. Suchanek,et al.  ESTER: efficient search on text, entities, and relations , 2007, SIGIR.

[106]  Susan Gauch,et al.  Improving Ontology-Based User Profiles , 2004, RIAO.

[107]  S. A. Raaijmakers,et al.  Multinomial Language Learning: Investigations into the Geometry of Language , 2009 .

[108]  Giuseppe Attardi,et al.  Ranking very many typed entities on wikipedia , 2007, CIKM '07.

[109]  Jaap Kamps,et al.  Finding Entities or Information Using Annotations , 2009 .

[110]  Kai-Fu Lee Delighting Chinese users: the Google China experience , 2008, SIGIR '08.

[111]  Sander Evers,et al.  Sensor data management with probabilistic models , 2009 .

[112]  Jaap Kamps,et al.  Entity ranking using Wikipedia as a pivot , 2010, CIKM.

[113]  Eric Horvitz,et al.  Patterns of search: analyzing and modeling Web query refinement , 1999 .

[114]  Jaap Kamps Effective Smoothing for a Terabyte of Text , 2005, TREC.

[115]  Ryen W. White,et al.  Finding relevant documents using top ranking sentences: an evaluation of two alternative schemes , 2002, SIGIR '02.

[116]  Paul Thomas,et al.  Overview of the TREC 2009 Entity Track , 2009, TREC.

[117]  Saswati Mukherjee,et al.  A Recursive Approach to Entity Ranking and List Completion Using Entity Determining Terms, Qualifiers and Prominent n-Grams , 2009, INEX.

[118]  Yong Yu,et al.  Exploring social annotations for the semantic web , 2006, WWW '06.

[119]  Wolfgang Nejdl,et al.  Using ODP metadata to personalize search , 2005, SIGIR '05.

[120]  W. Bruce Croft,et al.  Investigating Retrieval Performance with Manually-Built Topic Models , 2007, RIAO.

[121]  Jack G. Conrad,et al.  A system for discovering relationships by feature extraction from text databases , 1994, SIGIR '94.

[122]  Taco Ekkel,et al.  AquaBrowser: Search and information discovery for libraries , 2007, Inf. Serv. Use.

[123]  Christopher H. Brooks,et al.  Improved annotation of the blogosphere via autotagging and hierarchical clustering , 2006, WWW '06.

[124]  Gerhard Weikum,et al.  NAGA: Searching and Ranking Knowledge , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[125]  W. Bruce Croft,et al.  Cluster-based retrieval using language models , 2004, SIGIR '04.

[126]  M. Żukowski,et al.  Balancing vectorized query execution with bandwidth-optimized storage , 2009 .

[127]  Jaap Kamps,et al.  Focused Search in Books and Wikipedia: Categories, Links and Relevance Feedback , 2009, INEX.

[128]  Mark van Assem,et al.  Converting and Integrating Vocabularies for the Semantic Web , 2010 .

[129]  G. Folino High performance data mining using bio-inspired techniques , 2010 .

[130]  Andrei Broder,et al.  A taxonomy of web search , 2002, SIGF.

[131]  Zulfiqar Ali Memon Designing human-awareness for ambient agents: A human mindreading perspective , 2010, J. Ambient Intell. Smart Environ..

[132]  Richard M. Schwartz,et al.  A hidden Markov model information retrieval system , 1999, SIGIR '99.

[133]  Djoerd Hiemstra,et al.  The Importance of Prior Probabilities for Entry Page Search , 2002, SIGIR '02.

[134]  Craig MacDonald,et al.  University of Glasgow at TREC 2009: Experiments with Terrier , 2009, TREC.

[135]  Daniela Karin Rosner,et al.  Tag Clouds: Data Analysis Tool or Social Signaller? , 2008, Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008).

[136]  Charles L. A. Clarke,et al.  The TREC 2006 Terabyte Track , 2006, TREC.

[137]  P. V. Maanen Adaptive Support for Human-Computer Teams : Exploring the Use of Cognitive Models of Trust and Attention , 2010 .

[138]  Maarten Marx,et al.  From documents to data: linked data at the Dutch Parliament , 2010 .

[139]  Jaime Teevan,et al.  Implicit feedback for inferring user preference: a bibliography , 2003, SIGF.

[140]  Jade Goldstein-Stewart,et al.  The use of MMR, diversity-based reranking for reordering documents and producing summaries , 1998, SIGIR '98.

[141]  A. R. van Ballegooij,et al.  RAM: Array Database Management through Relational Mapping , 2009 .

[142]  Jaap Kamps,et al.  Explicit extraction of topical context , 2011, J. Assoc. Inf. Sci. Technol..

[143]  David Carmel,et al.  Enhancing cluster labeling using wikipedia , 2009, SIGIR.

[144]  Jaap Kamps,et al.  Web directories as topical context , 2009 .

[145]  Gilad Mishne,et al.  A Study of Blog Search , 2006, ECIR.

[146]  Jaap Kamps,et al.  Finding Entities in Wikipedia Using Links and Categories , 2008, INEX.

[147]  Martha Larson,et al.  Term clouds as surrogates for user generated speech , 2008, SIGIR '08.

[148]  Fernando Pereira,et al.  Generating summary keywords for emails using topics , 2008, IUI '08.

[149]  Chen Li,et al.  Mining Process Model Variants: Challenges, Techniques, Examples , 2010 .

[150]  Charles L. A. Clarke,et al.  Information Retrieval - Implementing and Evaluating Search Engines , 2010 .

[151]  Djoerd Hiemstra,et al.  The Impact of Positive, Negative and Topical Relevance Feedback , 2008, TREC.

[152]  Marcel Ausloos,et al.  Contextualising tags in collaborative tagging systems , 2009, HT '09.

[153]  M. Hiel,et al.  An adaptive service oriented architecture : Automatically solving interoperability problems , 2010 .

[154]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[155]  Carl Gutwin,et al.  Seeing things in the clouds: the effect of visual features on tag cloud selections , 2008, Hypertext.

[156]  Rohini K. Srihari,et al.  Biterm language models for document retrieval , 2002, SIGIR '02.

[157]  Marti A. Hearst,et al.  Reexamining the cluster hypothesis: scatter/gather on retrieval results , 1996, SIGIR '96.

[158]  Ludovic Denoyer,et al.  The Wikipedia XML Corpus , 2006, INEX.

[159]  Ian Ruthven,et al.  Re-examining the potential effectiveness of interactive query expansion , 2003, SIGIR.

[160]  W. Bruce Croft,et al.  Search Engines - Information Retrieval in Practice , 2009 .

[161]  Christopher D. Manning,et al.  Incorporating Non-local Information into Information Extraction Systems by Gibbs Sampling , 2005, ACL.

[162]  Joost Geurts,et al.  A document engineering model and processing framework for multimedia documents , 2010 .

[163]  M. de Rijke,et al.  Conceptual language models for domain-specific retrieval , 2010, Inf. Process. Manag..

[164]  Susan Gauch,et al.  Exploiting hierarchical relationships in conceptual search , 2004, CIKM '04.

[165]  Luo Si,et al.  Entity Retrieval with Hierarchical Relevance Model, Exploiting the Structure of Tables and Learning Homepage Classifiers , 2009, TREC.

[166]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[167]  David M. Pennock,et al.  Inferring hierarchical descriptions , 2002, CIKM '02.

[168]  James A. Thom,et al.  Entity ranking in Wikipedia: utilising categories, links and topic difficulty prediction , 2009, Information Retrieval.

[169]  W. Bruce Croft,et al.  Combining the language model and inference network approaches to retrieval , 2004, Inf. Process. Manag..

[170]  Satoshi Sekine,et al.  A survey of named entity recognition and classification , 2007 .

[171]  Andrew Trotman,et al.  Report on the SIGIR 2007 workshop on focused retrieval , 2007, SIGF.

[172]  Jian-Yun Nie,et al.  Using query contexts in information retrieval , 2007, SIGIR.

[173]  Jonathan Feinberg,et al.  Wordle , 2010, Beautiful Visualization.

[174]  W. Bruce Croft,et al.  LDA-based document models for ad-hoc retrieval , 2006, SIGIR.

[175]  Edgar Meij,et al.  An evaluation of entity and frequency based query completion methods , 2009, SIGIR.

[176]  Marco Kalz,et al.  Placement Support for Learners in Learning Networks , 2006 .

[177]  Djoerd Hiemstra,et al.  Language Modelling and Relevance , 2003 .

[178]  Clement T. Yu,et al.  Personalized web search by mapping user queries to categories , 2002, CIKM '02.

[179]  Mounia Lalmas,et al.  Overview of the INEX 2007 Entity Ranking Track , 2008, INEX.

[180]  Jaap Kamps,et al.  The Importance of Link Evidence in Wikipedia , 2008, ECIR.

[181]  James A. Thom,et al.  Using Wikipedia Categories and Links in Entity Ranking , 2007, INEX.

[182]  Martin Halvey,et al.  An assessment of tag presentation techniques , 2007, WWW '07.

[183]  Qing Gu,et al.  Guiding Service-Oriented Software Engineering: A View-based Approach , 2011 .

[184]  C. Gerritsen Caught in the Act: Investigating Crime by Agent-Based Simulation , 2010 .

[185]  Andrew Trotman,et al.  Overview of INEX 2007 Link the Wiki Track , 2007, INEX.

[186]  Christopher C. Yang Search Engines Information Retrieval in Practice , 2010 .

[187]  ChengXiang Zhai,et al.  Statistical Language Models for Information Retrieval: A Critical Review , 2008, Found. Trends Inf. Retr..

[188]  Wouter Immánuël Koelewijn Privacy en politiegegevens. Over geautomatiseerde normatieve informatie-uitwisseling , 2009 .

[189]  Amanda Spink,et al.  How are we searching the World Wide Web? A comparison of nine search engine transaction logs , 2006, Inf. Process. Manag..

[190]  Michael J. Muller,et al.  Getting our head in the clouds: toward evaluation studies of tagclouds , 2007, CHI.

[191]  Hugo Hendrik Kielman Politiële gegevensverwerking en Privacy. Naar een effectieve waarborging , 2010 .

[192]  Olga Anatoliyivna Kulyk,et al.  Do You Know What I Know? Situational Awareness of Co-located Teams in Multidisplay Environments. , 2010 .

[193]  James Allan,et al.  RIAO '07 Large Scale Semantic Access to Content (Text, Image, Video, and Sound) , 2007 .

[194]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[195]  Alexander Dekhtyar,et al.  Information Retrieval , 2018, Lecture Notes in Computer Science.