Fast list Viterbi decoding and application for source-channel coding of images
暂无分享,去创建一个
[1] R. Fossum,et al. On Picard groups of algebraic fibre spaces , 1973 .
[2] W. Fulton. Introduction to Toric Varieties. , 1993 .
[3] William A. Pearlman,et al. A new, fast, and efficient image codec based on set partitioning in hierarchical trees , 1996, IEEE Trans. Circuits Syst. Video Technol..
[4] Kenneth Zeger,et al. Progressive image coding for noisy channels , 1997, IEEE Signal Processing Letters.
[5] Ralf Hinze,et al. Constructing Red−Black Trees , 1999 .
[6] Hanspeter Kraft,et al. Geometrische Methoden in der Invariantentheorie , 1984 .
[7] D. Mumford. The red book of varieties and schemes , 1988 .
[8] Hanspeter Kraft,et al. Local Properties of Algebraic Group Actions , 1989 .
[9] Jarosław Włodarczyk,et al. Maximal Quasiprojective Subsets and the Kleiman-Chevalley Quasiprojectivity Criterion , 1999 .
[10] Biing-Hwang Juang,et al. Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.
[11] Jürgen Hausen,et al. PRODUCING GOOD QUOTIENTS BY EMBEDDING INTO TORIC VARIETIES by , 2002 .
[12] J. S. Sadowsky. A maximum likelihood decoding algorithm for turbo codes , 1997, GLOBECOM 97. IEEE Global Telecommunications Conference. Conference Record.
[13] Frank K. Soong,et al. A Tree.Trellis Based Fast Search for Finding the N Best Sentence Hypotheses in Continuous Speech Recognition , 1990, HLT.
[14] Carl-Erik W. Sundberg,et al. List and soft symbol output Viterbi algorithms: extensions and comparisons , 1995, IEEE Trans. Commun..
[15] Mihai Halic. Families of toric varieties , 2002 .
[16] Hideyasu Sumihiro,et al. Equivariant completion II , 1975 .
[17] A. Białynicki-Birula,et al. Three theorems on existence of good quotients , 1997 .
[18] A. Bialnickibirula,et al. On Projectivity of Good Quotients , 1995 .
[19] Juergen Hausen. A Hilbert-Mumford-Criterion for SL2-Actions , 2002 .
[20] A. A'Campo-Neuen,et al. Quotients of divisorial toric varities , 2000 .
[21] Alexander Grothendieck,et al. Éléments de géométrie algébrique : II. Étude globale élémentaire de quelques classes de morphismes , 1961 .
[22] Jürgen Hausen,et al. A generalization of Mumford's geometric invariant theory , 2001, Documenta Mathematica.
[23] Andrzej Białynicki-Birula,et al. On complete orbit spaces of SL(2) actions, II , 1988 .
[24] Arne Svensson,et al. Multi-Rate Convolutional Codes , 1998 .
[25] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[26] Jon Callas,et al. OpenPGP Message Format , 1998, RFC.
[27] Carl-Erik W. Sundberg,et al. List Viterbi decoding algorithms with applications , 1994, IEEE Trans. Commun..
[28] Andrew J. Sommese,et al. Quotients by C ∗ × C ∗ Actions , 1985 .
[29] C. S. Seshadri. Quotient Spaces Modulo Reductive Algebraic Groups , 1972 .
[30] 隅広 秀康,et al. Equivariant Completion (代数幾何学の研究) , 1973 .
[31] Jürgen Hausen,et al. Equivariant Embeddings into Smooth Toric Varieties , 2000, Canadian Journal of Mathematics.
[32] D. Birkes,et al. Orbits on Linear Algebraic Groups , 1971 .