$\forall \exists \mathbb{R}$-completeness and area-universality
暂无分享,去创建一个
[1] Therese C. Biedl,et al. Drawing planar 3-trees with given face areas , 2013, Comput. Geom..
[2] Linda Kleist. Drawing Planar Graphs with Prescribed Face Areas , 2016, WG.
[3] Tillmann Miltzow. Augmenting a Geometric Matching is NP-complete , 2012, ArXiv.
[4] Maria Belk,et al. Realizability of Graphs in Three Dimensions , 2007, Discret. Comput. Geom..
[5] Günter Rote,et al. Blowing Up Polygonal Linkages , 2003 .
[6] James H. Davenport,et al. Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..
[7] Gunter M. Ziegler,et al. Realization spaces of 4-polytopes are universal , 1995 .
[8] J. Kratochvil,et al. Intersection Graphs of Segments , 1994, J. Comb. Theory, Ser. B.
[9] Paul W. Goldberg,et al. The Complexity of Computing a Nash Equilibrium , 2009, SIAM J. Comput..
[10] Lenore Blum,et al. Complexity and Real Computation , 1997, Springer New York.
[11] Jrgen Richter-Gebert,et al. Perspectives on Projective Geometry: A Guided Tour Through Real and Complex Geometry , 2011 .
[12] Carsten Thomassen. Plane Cubic Graphs with Prescribed Face Areas , 1992, Comb. Probab. Comput..
[13] Marcus Schaefer,et al. Realizability of Graphs and Linkages , 2013 .
[14] Robert Connelly,et al. Realizability of Graphs , 2007, Discret. Comput. Geom..
[15] Paul D. Seymour,et al. Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.
[16] Bruce Bueno de Mesquita,et al. An Introduction to Game Theory , 2014 .
[17] Tillmann Miltzow,et al. The Art Gallery Problem is $\exists \mathbb{R}$-complete , 2017 .
[18] N. Mnev. The universality theorems on the classification problem of configuration varieties and convex polytopes varieties , 1988 .
[19] S. Basu,et al. Algorithms in real algebraic geometry , 2003 .
[20] Riste Škrekovski,et al. Coloring face hypergraphs on surfaces , 2005, Eur. J. Comb..
[21] Marcus Schaefer,et al. Fixed Points, Nash Equilibria, and the Existential Theory of the Reals , 2017, Theory of Computing Systems.