SIC-POVMs and Compatibility among Quantum States

An unexpected connection exists between compatibility criteria for quantum states and Symmetric Informationally Complete quantum measurements (SIC-POVMs). Beginning with Caves, Fuchs and Schack’s "Conditions for compatibility of quantum state assignments", I show that a qutrit SIC-POVM studied in other contexts enjoys additional interesting properties. Compatibility criteria provide a new way to understand the relationship between SIC-POVMs and mutually unbiased bases, as calculations in the SIC representation of quantum states make clear. This, in turn, illuminates the resources necessary for magic-state quantum computation, and why hidden-variable models fail to capture the vitality of quantum mechanics.

[1]  R. Spekkens Evidence for the epistemic view of quantum states: A toy theory , 2004, quant-ph/0401052.

[2]  Huangjun Zhu,et al.  Super-symmetric informationally complete measurements , 2014, 1412.1099.

[3]  David Marcus Appleby,et al.  Linear dependencies in Weyl–Heisenberg orbits , 2013, Quantum Inf. Process..

[4]  Wojciech Słomczyński,et al.  Informational power of the Hoggar symmetric informationally complete positive operator-valued measure , 2016 .

[5]  David Marcus Appleby,et al.  Quantum conical designs , 2015, 1507.05323.

[6]  D. M. Appleby SIC‐POVMS and MUBS: Geometrical Relationships in Prime Dimension , 2009 .

[7]  J. Schwinger UNITARY OPERATOR BASES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Ruediger Schack,et al.  Quantum-Bayesian Coherence , 2009, 1301.3274.

[9]  G. Tabia,et al.  Experimental scheme for qubit and qutrit symmetric informationally complete positive operator-valued measurements using multiport devices , 2012 .

[10]  A Toy Model for Quantum Mechanics , 2007, 0705.2742.

[11]  Victor Veitch,et al.  The resource theory of stabilizer quantum computation , 2013, 1307.7171.

[12]  Christopher A. Fuchs,et al.  Some Negative Remarks on Operational Approaches to Quantum Theory , 2014, 1401.7254.

[13]  C. Fuchs QBism, the Perimeter of Quantum Bayesianism , 2010, 1003.5209.

[14]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[15]  Adán Cabello,et al.  Necessary and Sufficient Condition for Quantum State-Independent Contextuality. , 2015, Physical review letters.

[16]  X. Ren,et al.  Mathematics , 1935, Nature.

[17]  C. Fuchs,et al.  Conditions for compatibility of quantum-state assignments , 2002, quant-ph/0206110.

[18]  Anna Szymusiak,et al.  Informational power of the Hoggar SIC-POVM , 2015, 1512.01735.

[19]  A. J. Scott,et al.  SIC-POVMs: A new computer study , 2009 .

[20]  Adan Cabello State-independent quantum contextuality and maximum nonlocality , 2011 .

[21]  Blake C. Stacey Multiscale Structure in Eco-Evolutionary Dynamics , 2015, 1509.02958.

[22]  Robert W. Spekkens,et al.  Reconstruction of Gaussian quantum mechanics from Liouville mechanics with an epistemic restriction , 2011, 1111.5057.

[23]  Christopher Ferrie,et al.  Why protective measurement does not establish the reality of the quantum state , 2015, 1509.08893.

[24]  D. M. Appleby,et al.  Properties of QBist State Spaces , 2009, 0910.2750.

[25]  Ingemar Bengtsson,et al.  A Kochen–Specker inequality from a SIC , 2011, 1109.6514.

[26]  Discrete phase space based on finite fields , 2004, quant-ph/0401155.

[27]  R. Spekkens,et al.  Quantum from principles , 2012, ArXiv.

[28]  David Marcus Appleby,et al.  Exploring the geometry of qutrit state space using symmetric informationally complete probabilities , 2013, 1304.8075.

[29]  A. J. Scott,et al.  Symmetric informationally complete positive-operator-valued measures: A new computer study , 2010 .

[30]  W. Wootters A Wigner-function formulation of finite-state quantum mechanics , 1987 .

[31]  Charles C. Lindner,et al.  Steiner Triple Systems , 2008 .

[32]  Matthew F Pusey,et al.  On the reality of the quantum state , 2011, Nature Physics.

[34]  N. Mermin Hidden variables and the two theorems of John Bell , 1993, 1802.10119.

[35]  Huangjun Zhu,et al.  Quasiprobability Representations of Quantum Mechanics with Minimal Negativity. , 2016, Physical review letters.

[36]  A. Fine,et al.  No-go theorem for the composition of quantum systems. , 2013, Physical review letters.