Fundamental limits to graphene

Plasmon polaritons are hybrid excitations of light and mobile electrons that can confine the energy of long-wavelength radiation at the nanoscale. Plasmon polaritons may enable many enigmatic quantum effects, including lasing 1 , topological protection 2,3 and dipole-forbidden absorption 4 . A necessary condition for realizing such phenomena is a long plasmonic lifetime, which is notoriously difficult to achieve for highly confined modes 5 . Plasmon polaritons in graphene—hybrids of Dirac quasiparticles and infrared photons—provide a platform for exploring light–matter interaction at the nanoscale 6,7 . However, plasmonic dissipation in graphene is substantial 8 and its fundamental limits remain undetermined. Here we use nanometre-scale infrared imaging to investigate propagating plasmon polaritons in high-mobility encapsulated graphene at cryogenic temperatures. In this regime, the propagation of plasmon polaritons is primarily restricted by the dielectric losses of the encapsulated layers, with a minor contribution from electron– phonon interactions. At liquid-nitrogen temperatures, the intrinsic plasmonic propagation length can exceed 10 micrometres, or 50 plasmonic wavelengths, thus setting a record for highly confined and tunable polariton modes. Our nanoscale imaging results reveal the physics of plasmonic dissipation and will be instrumental in mitigating such losses in heterostructure engineering applications. Here we investigate plasmon polariton propagation and dissipation using near-field infrared microscopy, enabling a direct visualization of polaritonic standing waves on the surface

[1]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[2]  M. Fogler,et al.  Universal linear and nonlinear electrodynamics of a Dirac fluid , 2017, Proceedings of the National Academy of Sciences.

[3]  M. Vanwolleghem,et al.  Plasmonic behavior of III-V semiconductors in far-infrared and terahertz range , 2017 .

[4]  A. Geim,et al.  Imaging resonant dissipation from individual atomic defects in graphene , 2017, Science.

[5]  Enhancement of Plasmonic Performance in Epitaxial Silver at Low Temperature , 2017, Scientific Reports.

[6]  Kenji Watanabe,et al.  Tuning quantum nonlocal effects in graphene plasmonics , 2017, Science.

[7]  T. Taniguchi,et al.  Superballistic flow of viscous electron fluid through graphene constrictions , 2017, Nature Physics.

[8]  Ivan K. Schuller,et al.  Nanotextured phase coexistence in the correlated insulator V2O3 , 2016, Nature Physics.

[9]  Xiang Zhang,et al.  Infrared Topological Plasmons in Graphene. , 2017, Physical review letters.

[10]  F. Guinea,et al.  Polaritons in layered two-dimensional materials. , 2016, Nature materials.

[11]  D. N. Basov,et al.  Polaritons in van der Waals materials , 2016, Science.

[12]  Bo Zhen,et al.  Shrinking light to allow forbidden transitions on the atomic scale , 2016, Science.

[13]  James Hone,et al.  Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene , 2016, Nature Photonics.

[14]  D. Basov,et al.  Adiabatic Amplification of Plasmons and Demons in 2D Systems. , 2016, Physical review letters.

[15]  K. Novoselov,et al.  Negative local resistance caused by viscous electron backflow in graphene , 2015, Science.

[16]  M. Goldflam,et al.  Plasmons in graphene moiré superlattices. , 2015, Nature materials.

[17]  Stefan A. Maier,et al.  Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons , 2015 .

[18]  M. Calandra,et al.  Density-functional calculation of static screening in two-dimensional materials: The long-wavelength dielectric function of graphene , 2015, 1503.02530.

[19]  F. Guinea,et al.  Novel effects of strains in graphene and other two dimensional materials , 2015, 1503.00747.

[20]  Ulrich Hohenester,et al.  Plasmonics simulations with the MNPBEM toolbox: Consideration of substrates and layer structures , 2014, Comput. Phys. Commun..

[21]  G. Vignale,et al.  Highly confined low-loss plasmons in graphene-boron nitride heterostructures. , 2014, Nature materials.

[22]  G. Vignale,et al.  Plasmon losses due to electron-phonon scattering: The case of graphene encapsulated in hexagonal boron nitride , 2014, 1408.1653.

[23]  N. Marzari,et al.  Phonon-limited resistivity of graphene by first-principles calculations: Electron-phonon interactions, strain-induced gauge field, and Boltzmann equation , 2014, 1407.0830.

[24]  G. Navickaite,et al.  Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns , 2014, Science.

[25]  Gil Refael,et al.  Topological Polaritons , 2014, 1406.4156.

[26]  A. H. Castro Neto,et al.  Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride , 2014, Science.

[27]  N. Marzari,et al.  Electron-phonon interactions and the intrinsic electrical resistivity of graphene. , 2014, Nano letters.

[28]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[29]  Ballistic Heat Transfer and Energy Waves in an Electron System , 2013, 1306.4972.

[30]  M. Raschke,et al.  Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids , 2012 .

[31]  Gennady Shvets,et al.  Plasmonic Nanolaser Using Epitaxially Grown Silver Film , 2012, Science.

[32]  A. H. Castro Neto,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[33]  Philippe Godignon,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[34]  C. N. Lau,et al.  Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface. , 2011, Nano letters (Print).

[35]  E. Mariani,et al.  Temperature-dependent resistivity of suspended graphene , 2010, 1008.1631.

[36]  F. Guinea,et al.  Synthetic electric fields and phonon damping in carbon nanotubes and graphene , 2009, 0904.4660.

[37]  S. Sarma,et al.  Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene , 2007, 0711.0754.

[38]  D. Basko,et al.  Interplay of Coulomb and electron-phonon interactions in graphene , 2007, 0709.1927.

[39]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[40]  J. Robertson,et al.  Kohn anomalies and electron-phonon interactions in graphite. , 2004, Physical review letters.

[41]  G. Mahan,et al.  Electron-phonon effects in graphene and armchair (10,10) single-wall carbon nanotubes , 2000 .

[42]  L. Pietronero,et al.  Electrical conductivity of a graphite layer , 1980 .