Suppressing DC Voltage Ripples of MMC-HVDC Under Unbalanced Grid Conditions

There are second-order harmonics in the dc voltage and current when the MMC-HVDC system is under unbalanced grid conditions, even if the negative-sequence current controller is employed. This paper presents a supplementary dc voltage ripple suppressing controller (DCVRSC) to eliminate the second-order harmonic in the dc voltage of the MMC-HVDC system. The instantaneous power of the converter arm and phase unit indicates that there are zero-sequence double-line frequency components in the three-phase unit voltages when the ac system is under an unbalanced fault. Since the zero-sequence components cannot be offset by each other, they lead to the second-order harmonic in the dc voltage and dc current. The DCVRSC is developed to compensate the zero-sequence components in three-phase unit voltages. Simulation results based on a detailed PSCAD/EMTDC model prove that the DCVRSC can eliminate the second-order harmonic in the dc voltage. Meanwhile, the ac currents are kept balanced under the unbalanced fault conditions.

[1]  R. Marquardt Stromrichterschaltung mit verteilten Energiespeichern und Verfahren zur Steuerung einer derartigen Stromrichterschaltung , 2001 .

[2]  Rainer Marquardt,et al.  An innovative modular multilevel converter topology suitable for a wide power range , 2003, 2003 IEEE Bologna Power Tech Conference Proceedings,.

[3]  D. Retzmann,et al.  A new Multilevel Voltage-Sourced Converter Topology for HVDC Applications , 2008 .

[4]  H. Akagi,et al.  Control and Experiment of Pulsewidth-Modulated Modular Multilevel Converters , 2009, IEEE Transactions on Power Electronics.

[5]  Hans-Peter Nee,et al.  On dynamics and voltage control of the Modular Multilevel Converter , 2009, 2009 13th European Conference on Power Electronics and Applications.

[6]  Marc Hiller,et al.  Modulation, Losses, and Semiconductor Requirements of Modular Multilevel Converters , 2010, IEEE Transactions on Industrial Electronics.

[7]  Reduced Switching-Frequency Modulation and Circulating Current Suppression for Modular Multilevel Converters , 2012, IEEE Transactions on Power Delivery.

[8]  U N Gnanarathna,et al.  Efficient Modeling of Modular Multilevel HVDC Converters (MMC) on Electromagnetic Transient Simulation Programs , 2011, IEEE Transactions on Power Delivery.

[9]  Zheng Xu,et al.  Impact of Sampling Frequency on Harmonic Distortion for Modular Multilevel Converter , 2011, IEEE Transactions on Power Delivery.

[10]  Reza Iravani,et al.  Dynamic performance of a modular multilevel back-to-back HVDC system , 2010, 2011 IEEE Power and Energy Society General Meeting.

[11]  D. Peftitsis,et al.  High-Power Modular Multilevel Converters With SiC JFETs , 2010, IEEE Transactions on Power Electronics.

[12]  H. Abdin,et al.  Multilevel Voltage-Sourced Converters for HVDC and FACTS Applications , 2012 .

[13]  K. Ilves,et al.  Steady-State Analysis of Interaction Between Harmonic Components of Arm and Line Quantities of Modular Multilevel Converters , 2012, IEEE Transactions on Power Electronics.