The isomorphism problem on classes of automatic structures with transitive relations

Automatic structures are finitely presented structures where the universe and all relations can be recognized by finite automata. It is known that the isomorphism problem for automatic structures is complete for Σ 1 , the first existential level of the analytical hierarchy. Positive results on ordinals and on Boolean algebras raised hope that the isomorphism problem is simpler for transitive relations. We prove that this is not the case. More precisely, this paper shows: (i) The isomorphism problem for automatic equivalence relations is complete for Π 1 (first universal level of the arithmetical hierarchy). (ii) The isomorphism problem for automatic trees of height n ≥ 2 is Π 2n−3-complete. (iii) The isomorphism problem for well-founded automatic order trees is recursively equivalent to true first-order arithmetic. (iv) The isomorphism problem for automatic order trees is Σ 1 -complete. (v) The isomorphism problem for automatic linear orders is Σ 1 -complete. We also obtain Π 1 -completeness of the elementary equivalence problem for several classes of automatic structures and Σ 1 -completeness of the isomorphism problem for linear orders consisting of a deterministic context-free language together with the lexicographic order. This solves several open questions of Ésik, Khoussainov, Nerode, Rubin, and Stephan.

[1]  Sasha Rubin,et al.  Some results on automatic structures , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[2]  Dietrich Kuske Where Automatic Structures Benefit from Weighted Automata , 2011, Algebraic Foundations in Computer Science.

[3]  Markus Lohrey,et al.  Isomorphism of regular trees and words , 2013, Inf. Comput..

[4]  S. Goncharov,et al.  Computable Structure and Non-Structure Theorems , 2002 .

[5]  I︠U︡riĭ Leonidovich Ershov Recursive model theory , 1998 .

[6]  Bernard R. Hodgson On Direct Products of Automaton Decidable Theories , 1982, Theor. Comput. Sci..

[7]  Andreas Weber,et al.  On the valuedness of finite transducers , 1990, Acta Informatica.

[8]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[9]  Achim Blumensath,et al.  Finite Presentations of Infinite Structures: Automata and Interpretations , 2004, Theory of Computing Systems.

[10]  Anil Nerode,et al.  Open Questions in the Theory of Automatic Structures , 2008, Bull. EATCS.

[11]  Mia Minnes,et al.  Model-theoretic complexity of automatic structures , 2009, Ann. Pure Appl. Log..

[12]  André Nies,et al.  Describing Groups , 2007, Bulletin of Symbolic Logic.

[13]  Anil Nerode,et al.  Handbook of Recursive Mathematics , 1998 .

[14]  Achim Blumensath,et al.  Automatic structures , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[15]  Isomorphisms of scattered automatic linear orders , 2014, Theor. Comput. Sci..

[16]  Z. Ésik An undecidable property of context-free linear orders , 2011, Inf. Process. Lett..

[17]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[18]  Julia F. Knight,et al.  Computable trees of Scott rank ω1CK, and computable approximation , 2006, Journal of Symbolic Logic.

[19]  C. C. Elgot Decision problems of finite automata design and related arithmetics , 1961 .

[20]  Wolfgang Thomas On Frontiers of Regular Trees , 1986, RAIRO Theor. Informatics Appl..

[21]  David B. A. Epstein,et al.  Word processing in groups , 1992 .

[22]  Julia F. Knight,et al.  Classification from a Computable Viewpoint , 2006, Bulletin of Symbolic Logic.

[23]  Sasha Rubin,et al.  Automata Presenting Structures: A Survey of the Finite String Case , 2008, Bulletin of Symbolic Logic.

[24]  Douglas A. Cenzer,et al.  Effective categoricity of equivalence structures , 2006, Ann. Pure Appl. Log..

[25]  Denis R. Hirschfeldt,et al.  Realizing Levels of the Hyperarithmetic Hierarchy as Degree Spectra of Relations on Computable Structures , 2002, Notre Dame J. Formal Log..

[26]  Mia Minnes,et al.  Analysing Complexity in Classes of Unary Automatic Structures , 2009, LATA.

[27]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[28]  Douglas Cenzer,et al.  Complexity Theoretic Model Theory and Algebra , 2013 .

[29]  André Nies,et al.  Automatic Structures: Richness and Limitations , 2004, LICS.

[30]  Markus Lohrey,et al.  Some natural decision problems in automatic graphs , 2010, J. Symb. Log..

[31]  Frank Stephan,et al.  Automatic linear orders and trees , 2005, TOCL.

[32]  I︠U︡riĭ Leonidovich Ershov Recursive algebra, analysis and combinatorics , 1998 .

[33]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[34]  D. Kuske,et al.  Automatic structures of bounded degree revisited , 2011, The Journal of Symbolic Logic.

[35]  Mia Minnes,et al.  Model Theoretic Complexity of Automatic Structures (Extended Abstract) , 2008, TAMC.

[36]  Anil Nerode,et al.  Automatic Presentations of Structures , 1994, LCC.

[37]  Juha Honkala On the Problem Whether the Image of an N-Rational Series Equals , 2006, Fundam. Informaticae.

[38]  Jeffrey B. Remmel,et al.  Chapter 10 Complexity theoretic model theory and algebra , 1998 .

[39]  Vince Bárány,et al.  A Hierarchy of Automatic $\omega$-Words having a Decidable MSO Theory , 2008, RAIRO Theor. Informatics Appl..

[40]  Julia A. Knight,et al.  Computable structures and the hyperarithmetical hierarchy , 2000 .

[41]  C. Delhommé Automaticité des ordinaux et des graphes homogènes , 2004 .

[42]  Markus Lohrey,et al.  Tree-Automatic Well-Founded Trees , 2012, CiE.

[43]  Wilfrid Hodges,et al.  Model Theory: The existential case , 1993 .

[44]  Todor Tsankov,et al.  The additive group of the rationals does not have an automatic presentation , 2009, The Journal of Symbolic Logic.

[45]  Yuri Matiyasevich,et al.  Hilbert’s tenth problem , 2019, 100 Years of Math Milestones.

[46]  Zoltán Ésik,et al.  The equational theory of regular words , 2005, Inf. Comput..

[47]  Zoltán Ésik,et al.  Algebraic Linear Orderings , 2011, Int. J. Found. Comput. Sci..

[48]  Markus Lohrey,et al.  The isomorphism problem for ω-automatic trees , 2010, Ann. Pure Appl. Log..

[49]  Peter Habermehl,et al.  Ehrenfeucht-Fraïssé goes elementarily automatic for structures of bounded degree , 2012, STACS.

[50]  R. Soare Recursively enumerable sets and degrees , 1987 .

[51]  Gábor Braun,et al.  Breaking up Finite Automata Presentable torsion-Free Abelian Groups , 2011, Int. J. Algebra Comput..