Disturbance-decoupling observers for a class of second order distributed parameter systems

This work is concerned with the construction of disturbance-decoupling observers for a class of second order distributed parameter systems. The observer design relies on the knowledge of the operator associated with the spatial distribution of the disturbances. Following the finite dimensional results on disturbance-decoupling observers, a disturbance decoupling observer is proposed for a class of second order distributed parameter systems. Conditions for the solvability of the disturbance-decoupling observer are provided and Lyapunov-based convergence of the position and velocity errors is summarized. Simulations studies for the one-dimensional wave equation with two position measurements are included to illustrate the benefits of the disturbance-decoupling observer.

[1]  Michael A. Demetriou,et al.  Natural observers for second order lumped and distributed parameter systems using parameter-dependent Lyapunov functions , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[2]  Michael A. Demetriou,et al.  Natural Observer Design for Singularly Perturbed Vector Second-Order Systems , 2005 .

[3]  Jie Chen,et al.  Design of unknown input observers and robust fault detection filters , 1996 .

[4]  Peter Lancaster,et al.  Lambda-matrices and vibrating systems , 2002 .

[5]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[6]  C. Nelson Dorny,et al.  A Vector Space Approach to Models and Optimization , 1983 .

[7]  M.A. Demetriou,et al.  Unknown Input Observers for a class of distributed parameter systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[8]  M. Demetriou Using unknown input observers for robust adaptive fault detection in vector second-order systems , 2005 .

[9]  K. Höllig Finite element methods with B-splines , 1987 .

[10]  Michael A. Demetriou,et al.  Adaptive parameter estimation of hyperbolic distributed parameter systems : non-symmetric damping and slowly time varying systems , 1998 .

[11]  Michael A. Demetriou,et al.  UIO for fault detection in vector second order systems , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[12]  Silvio Simani,et al.  Model-based fault diagnosis in dynamic systems using identification techniques , 2003 .

[13]  Mark J. Balas Do All Linear Flexible Structures Have Convergent Second-Order Observers? , 1999 .

[14]  Michael A. Demetriou,et al.  Natural second-order observers for second-order distributed parameter systems , 2004, Syst. Control. Lett..

[15]  Jie Chen,et al.  Robust Model-Based Fault Diagnosis for Dynamic Systems , 1998, The International Series on Asian Studies in Computer and Information Science.