False discovery rate revisited: FDR and topological inference using Gaussian random fields

[1]  John R. Terry,et al.  A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. , 2006, Cerebral cortex.

[2]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[3]  Karl J. Friston,et al.  Comparing Functional (PET) Images: The Assessment of Significant Change , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[4]  M. Hallett Human Brain Function , 1998, Trends in Neurosciences.

[5]  Karl J. Friston,et al.  Assessing the significance of focal activations using their spatial extent , 1994, Human brain mapping.

[6]  Keith J. Worsley,et al.  An improved theoretical P value for SPMs based on discrete local maxima , 2005, NeuroImage.

[7]  Karl J. Friston,et al.  Diffusion-based spatial priors for imaging , 2007, NeuroImage.

[8]  Thomas E. Nichols,et al.  Controlling the familywise error rate in functional neuroimaging: a comparative review , 2003, Statistical methods in medical research.

[9]  Karl J. Friston,et al.  Applications of random field theory to electrophysiology , 2005, Neuroscience Letters.

[10]  Alan C. Evans,et al.  A Three-Dimensional Statistical Analysis for CBF Activation Studies in Human Brain , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[11]  F. Huang,et al.  Gradient weighted smoothing for MRI intensity correction , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[12]  K. Worsley Developments in Random Field Theory , 2003 .

[13]  Nava Rubin,et al.  Cluster-based analysis of FMRI data , 2006, NeuroImage.

[14]  E. Dubois,et al.  Digital picture processing , 1985, Proceedings of the IEEE.

[15]  Karl J. Friston,et al.  Robust Smoothness Estimation in Statistical Parametric Maps Using Standardized Residuals from the General Linear Model , 1999, NeuroImage.

[16]  Sylvain Baillet,et al.  A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem , 1997, IEEE Transactions on Biomedical Engineering.

[17]  Karl J. Friston,et al.  Human Brain Function , 1997 .

[18]  Karl J. Friston Regulation of rCBF by diffusible signals: An analysis of constraints on diffusion and elimination , 1995 .

[19]  P. Nunez The brain wave equation: a model for the EEG , 1974 .

[20]  I. Verdinelli,et al.  False Discovery Control for Random Fields , 2004 .

[21]  E. R. Davies,et al.  Machine vision - theory, algorithms, practicalities , 2004 .

[22]  K. Worsley,et al.  Unified univariate and multivariate random field theory , 2004, NeuroImage.

[23]  Karl J. Friston,et al.  MEG source localization under multiple constraints: An extended Bayesian framework , 2006, NeuroImage.

[24]  D. Twieg The k-trajectory formulation of the NMR imaging process with applications in analysis and synthesis of imaging methods. , 1983, Medical physics.

[25]  H. Haken,et al.  A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics , 1997 .

[26]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[27]  Y. Benjamini,et al.  False Discovery Rates for Spatial Signals , 2007 .

[28]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[29]  N. Birbaumer,et al.  Dynamics of gamma-band activity induced by auditory pattern changes in humans. , 2002, Cerebral cortex.