Exact Medial Axis Computation for Circular Arc Boundaries

We propose a method to compute the algebraically correct medial axis for simply connected planar domains which are given by boundary representations composed of rational circular arcs. The algorithmic approach is based on the Divide-&-Conquer paradigm, as used in [12]. However, we show how to avoid inaccuracies in the medial axis computations arising from a non-algebraic biarc construction of the boundary. To this end we introduce the Exact Circular Arc Boundary representation (ECAB), which allows algebraically exact calculation of bisector curves. Fractions of these bisector curves are then used to construct the exact medial axis. We finally show that all necessary computations can be performed over the field of rational numbers with a small number of adjoint square-roots.

[1]  Chee Yap,et al.  The exact computation paradigm , 1995 .

[2]  R. Brubaker Models for the perception of speech and visual form: Weiant Wathen-Dunn, ed.: Cambridge, Mass., The M.I.T. Press, I–X, 470 pages , 1968 .

[3]  Pierre Alliez,et al.  Computational geometry algorithms library , 2008, SIGGRAPH '08.

[4]  Kurt Mehlhorn,et al.  The LEDA Platform of Combinatorial and Geometric Computing , 1997, ICALP.

[5]  Waclaw Sierpinski,et al.  Elementary theory of numbers, Second Edition , 1988, North-Holland mathematical library.

[6]  Kurt Mehlhorn,et al.  A Separation Bound for Real Algebraic Expressions , 2001, Algorithmica.

[7]  Gershon Elber,et al.  Bisector curves of planar rational curves , 1998, Comput. Aided Des..

[8]  Friedhelm Meyer auf der Heide,et al.  Algorithms — ESA 2001 , 2001, Lecture Notes in Computer Science.

[9]  Christoph Burnikel Rational points on circles , 1998 .

[10]  Paul Kunkel,et al.  The tangency problem of Apollonius: three looks , 2007 .

[11]  Franz Aurenhammer,et al.  Medial axis computation for planar free-form shapes , 2009, Comput. Aided Des..

[12]  D. Du,et al.  Computing in Euclidean Geometry , 1995 .

[13]  Ioannis Z. Emiris,et al.  Exact and efficient evaluation of the InCircle predicate for parametric ellipses and smooth convex objects , 2008, Comput. Aided Des..

[14]  L Brenner Core library. , 1969, The New England journal of medicine.

[15]  Kurt Mehlhorn,et al.  A Computational Basis for Conic Arcs and Boolean Operations on Conic Polygons , 2002, ESA.

[16]  Ioannis Z. Emiris,et al.  Exact Delaunay graph of smooth convex pseudo-circles: general predicates, and implementation for ellipses , 2009, Symposium on Solid and Physical Modeling.

[17]  Gershon Elber,et al.  Precise Voronoi cell extraction of free-form rational planar closed curves , 2005, SPM '05.

[18]  Rajeev Raman,et al.  Algorithms — ESA 2002 , 2002, Lecture Notes in Computer Science.

[19]  Ioannis Z. Emiris,et al.  The predicates of the Apollonius diagram: Algorithmic analysis and implementation , 2006, Comput. Geom..

[20]  Kurt Mehlhorn,et al.  LEDA: a platform for combinatorial and geometric computing , 1997, CACM.