Exact Medial Axis Computation for Circular Arc Boundaries
暂无分享,去创建一个
Oswin Aichholzer | Thomas Hackl | Wolfgang Aigner | Nicola Wolpert | Nicola Wolpert | O. Aichholzer | T. Hackl | W. Aigner
[1] Chee Yap,et al. The exact computation paradigm , 1995 .
[2] R. Brubaker. Models for the perception of speech and visual form: Weiant Wathen-Dunn, ed.: Cambridge, Mass., The M.I.T. Press, I–X, 470 pages , 1968 .
[3] Pierre Alliez,et al. Computational geometry algorithms library , 2008, SIGGRAPH '08.
[4] Kurt Mehlhorn,et al. The LEDA Platform of Combinatorial and Geometric Computing , 1997, ICALP.
[5] Waclaw Sierpinski,et al. Elementary theory of numbers, Second Edition , 1988, North-Holland mathematical library.
[6] Kurt Mehlhorn,et al. A Separation Bound for Real Algebraic Expressions , 2001, Algorithmica.
[7] Gershon Elber,et al. Bisector curves of planar rational curves , 1998, Comput. Aided Des..
[8] Friedhelm Meyer auf der Heide,et al. Algorithms — ESA 2001 , 2001, Lecture Notes in Computer Science.
[9] Christoph Burnikel. Rational points on circles , 1998 .
[10] Paul Kunkel,et al. The tangency problem of Apollonius: three looks , 2007 .
[11] Franz Aurenhammer,et al. Medial axis computation for planar free-form shapes , 2009, Comput. Aided Des..
[12] D. Du,et al. Computing in Euclidean Geometry , 1995 .
[13] Ioannis Z. Emiris,et al. Exact and efficient evaluation of the InCircle predicate for parametric ellipses and smooth convex objects , 2008, Comput. Aided Des..
[14] L Brenner. Core library. , 1969, The New England journal of medicine.
[15] Kurt Mehlhorn,et al. A Computational Basis for Conic Arcs and Boolean Operations on Conic Polygons , 2002, ESA.
[16] Ioannis Z. Emiris,et al. Exact Delaunay graph of smooth convex pseudo-circles: general predicates, and implementation for ellipses , 2009, Symposium on Solid and Physical Modeling.
[17] Gershon Elber,et al. Precise Voronoi cell extraction of free-form rational planar closed curves , 2005, SPM '05.
[18] Rajeev Raman,et al. Algorithms — ESA 2002 , 2002, Lecture Notes in Computer Science.
[19] Ioannis Z. Emiris,et al. The predicates of the Apollonius diagram: Algorithmic analysis and implementation , 2006, Comput. Geom..
[20] Kurt Mehlhorn,et al. LEDA: a platform for combinatorial and geometric computing , 1997, CACM.