The beta generalized Rayleigh distribution with applications to lifetime data

For the first time, we propose a new distribution so-called the beta generalized Rayleigh distribution that contains as special sub-models some well-known distributions. Expansions for the cumulative distribution and density functions are derived. We obtain explicit expressions for the moments, moment generating function, mean deviations, Bonferroni and Lorenz curves and densities of the order statistics and their moments. We estimate the parameters by maximum likelihood and provide the observed information matrix. The usefulness of the new distribution is illustrated through two real data sets that show that it is quite flexible in analyzing positive data instead of the generalized Rayleigh and Rayleigh distributions.

[1]  G. S. Mudholkar,et al.  A Generalization of the Weibull Distribution with Application to the Analysis of Survival Data , 1996 .

[2]  Magne Vollan Aarset,et al.  How to Identify a Bathtub Hazard Rate , 1987, IEEE Transactions on Reliability.

[3]  Debasis Kundu,et al.  Generalized Rayleigh distribution: different methods of estimations , 2005, Comput. Stat. Data Anal..

[4]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[5]  J. Hosking L‐Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics , 1990 .

[6]  M. C. Jones Families of distributions arising from distributions of order statistics , 2004 .

[7]  Samuel Kotz,et al.  The beta exponential distribution , 2006, Reliab. Eng. Syst. Saf..

[8]  Baha-Eldin Khaledi,et al.  On the likelihood ratio order for convolutions of independent generalized Rayleigh random variables , 2008 .

[9]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[10]  S. Nadarajah,et al.  The beta Gumbel distribution , 2004 .

[11]  Gauss M. Cordeiro,et al.  A generalized modified Weibull distribution for lifetime modeling , 2008 .

[12]  Tzong-Ru Tsai,et al.  Acceptance sampling based on truncated life tests for generalized Rayleigh distribution , 2006 .

[13]  Y. H. Abdelkader,et al.  Computing the moments of order statistics from nonidentical random variables , 2004 .

[14]  W. J. Padgett,et al.  Inference for Reliability and Stress-Strength for a Scaled Burr Type X Distribution , 2001, Lifetime data analysis.

[15]  F. Famoye,et al.  BETA-NORMAL DISTRIBUTION AND ITS APPLICATIONS , 2002 .

[16]  D. F. Andrews,et al.  Data : a collection of problems from many fields for the student and research worker , 1985 .

[17]  Simos G. Meintanis,et al.  Estimation in the three-parameter inverse Gaussian distribution , 2005, Comput. Stat. Data Anal..

[18]  Malwane M. A. Ananda,et al.  A Generalization of the Half-Normal Distribution with Applications to Lifetime Data , 2008 .

[19]  J. L. Folks,et al.  The Inverse Gaussian Distribution as a Lifetime Model , 1977 .

[20]  Mohammad Z. Raqab,et al.  Generalized Rayleigh Distribution , 2011, International Encyclopedia of Statistical Science.

[21]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[22]  Gauss M. Cordeiro,et al.  The beta generalized half-normal distribution , 2010, Comput. Stat. Data Anal..

[23]  G. Cordeiro,et al.  The Weibull-geometric distribution , 2008, 0809.2703.

[24]  Gauss M. Cordeiro,et al.  The beta generalized exponential distribution , 2008, 0809.1889.

[25]  Gauss M. Cordeiro,et al.  The generalized inverse Weibull distribution , 2011 .

[26]  V. Gh. Vodă,et al.  Inferential procedures on a generalized Rayleigh variate. I , 1976 .

[27]  P. J. Green,et al.  Probability and Statistical Inference , 1978 .

[28]  A. Bekker,et al.  Reliability Characteristics of the Maxwell Distribution: A Bayes Estimation Study , 2005 .