Expansion and Lack Thereof in Randomly Perturbed Graphs

This paper studies the expansion properties of randomly perturbed graphs. These graphs are formed by, for example, adding a random $1{\text{-out}}$ or very sparse Erdős-Renyi graph to an arbitrary connected graph. The central results show that there exists a constant ?such that when any connected n-vertex base graph $\bar{G}$ is perturbed by adding a random 1-out then, with high probability, the resulting graph has $e(S,\bar S) \geq \delta |S|$ for all S? Vwith $|S| \leq \frac34 n$. When $\bar{G}$ is perturbed by adding a random Erdős-Renyi graph, $\mathbb{G}_{n,\epsilon/n}$, the expansion of the perturbed graph depends on the structure of the base graph. A necessary condition for the base graph is given under which the resulting graph is an expander with high probability. The proof techniques are also applied to study rapid mixing in the small worlds graphs described by Watts and Strogatz in [Nature 292(1998), 440---442] and by Kleinberg in [Proc. of 32nd ACM Symposium on Theory of Computing(2000), 163---170]. Analysis of Kleinberg's model shows that the graph stops being an expander exactly at the point where a decentralized algorithm is effective in constructing a short path. The proofs of expansion rely on a way of summing over subsets of vertices which allows an argument based on the First Moment Method to succeed.

[1]  Alan M. Frieze,et al.  A Geometric Preferential Attachment Model of Networks , 2004, WAW.

[2]  Guy E. Blelloch,et al.  Compact representations of separable graphs , 2003, SODA '03.

[3]  W. T. Gowers,et al.  RANDOM GRAPHS (Wiley Interscience Series in Discrete Mathematics and Optimization) , 2001 .

[4]  Christos H. Papadimitriou,et al.  On the Eigenvalue Power Law , 2002, RANDOM.

[5]  Alan M. Frieze,et al.  Adding random edges to dense graphs , 2004, Random Struct. Algorithms.

[6]  Joel Friedman,et al.  A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.

[7]  Amin Saberi,et al.  On certain connectivity properties of the internet topology , 2006, J. Comput. Syst. Sci..

[8]  Jon M. Kleinberg,et al.  The small-world phenomenon: an algorithmic perspective , 2000, STOC '00.

[9]  Shang-Hua Teng,et al.  Smoothed Analysis (Motivation and Discrete Models) , 2003, WADS.

[10]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[11]  Kurt Mehlhorn,et al.  Smoothed Analysis of Three Combinatorial Problems , 2003, MFCS.

[12]  Martin Suter,et al.  Small World , 2002 .

[13]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, International Workshop on Graph-Theoretic Concepts in Computer Science.

[14]  Noga Alon,et al.  A Spectral Technique for Coloring Random 3-Colorable Graphs , 1997, SIAM J. Comput..

[15]  Noam Berger,et al.  The diameter of long-range percolation clusters on finite cycles , 2001, Random Struct. Algorithms.

[16]  F. Chung Laplacians and the Cheeger Inequality for Directed Graphs , 2005 .

[17]  Ernesto Estrada,et al.  Spectral scaling and good expansion properties in complex networks , 2006, Europhysics Letters (EPL).

[18]  David Gamarnik,et al.  The diameter of a long range percolation graph , 2002, SODA '02.

[19]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[20]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[21]  F. Juhász On the spectrum of a random graph , 1981 .

[22]  Endre Szemerédi,et al.  On the second eigenvalue of random regular graphs , 1989, STOC '89.

[23]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[24]  D. Spielman,et al.  Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time , 2004 .

[25]  George Varghese,et al.  Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer communications , 2001, SIGCOMM 2001.

[26]  U. Feige,et al.  Spectral techniques applied to sparse random graphs , 2005 .

[27]  Abraham D. Flaxman,et al.  The diameter of randomly perturbed digraphs and some applications , 2007 .

[28]  B. Sudakov,et al.  On smoothed analysis in dense graphs and formulas , 2006 .

[29]  Fan Chung Graham,et al.  Analyzing the Small World Phenomenon Using a Hybrid Model with Local Network Flow (Extended Abstract) , 2004, WAW.

[30]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[31]  Tom Bohman,et al.  How many random edges make a dense graph hamiltonian? , 2003, Random Struct. Algorithms.

[32]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[33]  A. Sokal,et al.  Bounds on the ² spectrum for Markov chains and Markov processes: a generalization of Cheeger’s inequality , 1988 .

[34]  F. Chung,et al.  Eigenvalues of Random Power law Graphs , 2003 .

[35]  Béla Bollobás,et al.  The Diameter of a Cycle Plus a Random Matching , 1988, SIAM J. Discret. Math..

[36]  Alan M. Frieze,et al.  Crawling on Simple Models of Web Graphs , 2004, Internet Math..

[37]  Linyuan Lu,et al.  The Small World Phenomenon in Hybrid Power Law Graphs , 2004 .

[38]  C. Wu Algebraic connectivity of directed graphs , 2005 .

[39]  Daniel A. Spielman,et al.  Improved smoothed analysis of the shadow vertex simplex method , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[40]  Steven H. Strogatz,et al.  Small-world networks , 1999 .

[41]  S. Ross A random graph , 1981 .

[42]  Alan M. Frieze,et al.  A Geometric Preferential Attachment Model of Networks , 2006, Internet Math..

[43]  Alan M. Frieze,et al.  High Degree Vertices and Eigenvalues in the Preferential Attachment Graph , 2005, Internet Math..

[44]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[45]  Noga Alon,et al.  Eigenvalues and expanders , 1986, Comb..

[46]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[47]  Luca Becchetti,et al.  Average case and smoothed competitive analysis of the multi-level feedback algorithm , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[48]  R. Monasson Diffusion, localization and dispersion relations on “small-world” lattices , 1999 .

[49]  M. Biskup On the scaling of the chemical distance in long-range percolation models , 2003, math/0304418.

[50]  René Beier,et al.  Typical properties of winners and losers in discrete optimization , 2004, STOC '04.

[51]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.