Stationary States of Nonlinear Dirac Equations with General Potentials

We establish the existence of stationary states for the following nonlinear Dirac equation with real matrix potential M(x) and superlinearity g(x,|u|)u both without periodicity assumptions, via variational methods.

[1]  M. Esteban,et al.  Stationary states of the nonlinear Dirac equation: A variational approach , 1995 .

[2]  A. Rañada,et al.  Classical Nonlinear Dirac Field Models of Extended Particles , 1983 .

[3]  Alan Weinstein,et al.  Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential , 1986 .

[4]  L. Jeanjean,et al.  Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities , 2004 .

[5]  M. Pino,et al.  Multi-peak bound states for nonlinear Schrödinger equations , 1998 .

[6]  P. Felmer,et al.  Semi-classical states of nonlinear Schrödinger equations: a variational reduction method , 2002 .

[7]  T. Cazenave,et al.  Existence of standing waves for dirac fields with singular nonlinearities , 1990 .

[8]  Mario Soler,et al.  Classical, Stable, Nonlinear Spinor Field with Positive Rest Energy , 1970 .

[9]  A. Douady,et al.  Existence of excited states for a nonlinear Dirac field , 1988 .

[10]  A. Ambrosetti,et al.  Semiclassical States of Nonlinear Schrödinger Equations , 1997 .

[11]  T. Cazenave,et al.  Existence of localized solutions for a classical nonlinear Dirac field , 1986 .

[12]  Juncheng Wei,et al.  On interacting bumps of semi-classical states of nonlinear Schrödinger equations , 2000, Advances in Differential Equations.

[13]  Changfeng Gui,et al.  Existence of multi-bumb solutions for nonlinear schrödinger equations via variational method , 1996 .

[14]  Andrzej Szulkin,et al.  Generalized linking theorem with an application to a semilinear Schrödinger equation , 1998, Advances in Differential Equations.

[15]  Yanheng Ding,et al.  Solutions of nonlinear Dirac equations , 2006 .

[16]  C. Frønsdal,et al.  Nonlinear Spinor Fields , 1951 .

[17]  Yanyan Li On a singularly perturbed elliptic equation , 1997, Advances in Differential Equations.

[18]  F. Merle Existence of stationary states for nonlinear Dirac equations , 1988 .

[19]  Zhi-Qiang Wang,et al.  Standing waves with a critical frequency for nonlinear Schrödinger equations, II , 2003 .

[20]  Yanheng Ding,et al.  Deformation theorems on non‐metrizable vector spaces and applications to critical point theory , 2006 .

[21]  B. Sirakov Standing wave solutions of the nonlinear Schrödinger equation in ℝN , 2002 .

[22]  Paul H. Rabinowitz,et al.  On a class of nonlinear Schrödinger equations , 1992 .