GAAFET Versus Pragmatic FinFET at the 5nm Si-Based CMOS Technology Node

Speed and power performances of Si-based stacked-nanowire gate-all-around (GAA) FETs and pragmatic ultra-thin-fin FETs at the 5nm CMOS technology node are projected, compared, and physically explained based on 3-D numerical simulations. The respective device domains are also used to compare integration densities based on 6T-SRAM layouts. Predicted comparable performances and densities, with considerations of the complexity/cost of GAAFET processing versus that of the FinFET with pragmatic simplifications, suggest that the FinFET is the better choice for the future.

[1]  Mark Y. Liu,et al.  A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2 SRAM cell size , 2014, 2014 IEEE International Electron Devices Meeting.

[2]  M. Luisier,et al.  Performance projection of III-V ultra-thin-body, FinFET, and nanowire MOSFETs for two next-generation technology nodes , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[3]  Geert Hellings,et al.  (Invited) Gate-All-Around Nanowire FETs vs. Triple-Gate FinFETs: On Gate Integrity and Device Characteristics , 2016 .

[4]  O. Faynot,et al.  FDSOI CMOS devices featuring dual strained channel and thin BOX extendable to the 10nm node , 2014, 2014 IEEE International Electron Devices Meeting.

[5]  E.J. Nowak,et al.  The effective drive current in CMOS inverters , 2002, Digest. International Electron Devices Meeting,.

[6]  Isabelle Ferain,et al.  Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors , 2011, Nature.

[7]  M. V. Fischetti,et al.  Monte Carlo simulation of a 30 nm dual-gate MOSFET: how short can Si go? , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[8]  V. Trivedi,et al.  Nanoscale FinFETs with gate-source/drain underlap , 2005, IEEE Transactions on Electron Devices.

[9]  A. Thean,et al.  A Comprehensive Benchmark and Optimization of 5-nm Lateral and Vertical GAA 6T-SRAMs , 2016, IEEE Transactions on Electron Devices.

[10]  Borivoje Nikolic,et al.  Measurement and Analysis of Variability in 45 nm Strained-Si CMOS Technology , 2009, IEEE Journal of Solid-State Circuits.

[11]  Richard Stevenson Rise of the nanowire transistor [News] , 2016 .

[12]  H. Mertens,et al.  Vertically stacked gate-all-around Si nanowire CMOS transistors with dual work function metal gates , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[13]  O. Rozeau,et al.  Vertically stacked-NanoWires MOSFETs in a replacement metal gate process with inner spacer and SiGe source/drain , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[14]  G. Rzepa,et al.  Vertically stacked nanowire MOSFETs for sub-10nm nodes: Advanced topography, device, variability, and reliability simulations , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[15]  I. Young,et al.  CMOS performance benchmarking of Si, InAs, GaAs, and Ge nanowire n- and pMOSFETs with Lg=13 nm based on atomistic quantum transport simulation including strain effects , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[16]  Zhenming Zhou,et al.  SOI versus bulk-silicon nanoscale FinFETs , 2010 .

[17]  O. Rozeau,et al.  Parasitic Capacitance Analytical Model for Sub-7-nm Multigate Devices , 2016, IEEE Transactions on Electron Devices.

[18]  Jerry G. Fossum,et al.  Fundamentals of Ultra-Thin-Body MOSFETs and FinFETs , 2013 .

[19]  Diederik Verkest,et al.  Technology/System Codesign and Benchmarking for Lateral and Vertical GAA Nanowire FETs at 5-nm Technology Node , 2015, IEEE Transactions on Electron Devices.

[20]  V. Trivedi,et al.  Quantum-mechanical effects on the threshold voltage of undoped double-gate MOSFETs , 2005, IEEE Electron Device Letters.