Operational Resource Theory of Continuous-Variable Nonclassicality

Genuinely quantum states of a harmonic oscillator may be distinguished from their classical counterparts by the Glauber-Sudarshan P-representation -- a state lacking a positive P-function is said to be nonclassical. In this paper, we propose a general operational framework for studying nonclassicality as a resource in networks of passive linear elements and measurements with feed-forward. Within this setting, we define new measures of nonclassicality based on the quantum fluctuations of quadratures, as well as the quantum Fisher information of quadrature displacements. These lead to fundamental constraints on the manipulation of nonclassicality, especially its concentration into subsystems, that apply to generic multi-mode non-Gaussian states. Special cases of our framework include no-go results in the concentration of squeezing and a complete hierarchy of nonclassicality for single mode Gaussian states.

[1]  J. Cirac,et al.  Characterization of Gaussian operations and distillation of Gaussian states , 2002, quant-ph/0204085.

[2]  Rodrigo Gallego,et al.  The Resource Theory of Steering , 2014, TQC.

[3]  Nicole Yunger Halpern,et al.  The resource theory of informational nonequilibrium in thermodynamics , 2013, 1309.6586.

[4]  Robert W. Spekkens,et al.  A mathematical theory of resources , 2014, Inf. Comput..

[5]  J. Ignacio Cirac,et al.  Entanglement transformations of pure Gaussian states , 2003, Quantum Inf. Comput..

[6]  Ranjith Nair,et al.  Nonclassical distance in multimode bosonic systems , 2017, 1701.07688.

[7]  G. Vidal Entanglement of pure states for a single copy , 1999, quant-ph/9902033.

[8]  Denes Petz,et al.  Extremal properties of the variance and the quantum Fisher information , 2011, 1109.2831.

[9]  Vogel Nonclassical states: An observable criterion , 2000, Physical review letters.

[10]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[11]  T.C.Ralph Continuous variable quantum cryptography , 1999, quant-ph/9907073.

[12]  T. Ralph,et al.  Nondeterministic Noiseless Linear Amplification of Quantum Systems , 2009 .

[13]  Alexander Streltsov,et al.  Genuine quantum coherence , 2015, 1511.08346.

[14]  J. Sperling,et al.  Resources for Quantum Technology: Nonclassicality versus Entanglement , 2014 .

[15]  J Eisert,et al.  Distilling Gaussian states with Gaussian operations is impossible. , 2002, Physical review letters.

[16]  Dutta,et al.  Quantum-noise matrix for multimode systems: U(n) invariance, squeezing, and normal forms. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[17]  Alessandro Zavatta,et al.  Probing Quantum Commutation Rules by Addition and Subtraction of Single Photons to/from a Light Field , 2007, Science.

[18]  Saleh Rahimi-Keshari,et al.  Quantum process nonclassicality. , 2013, Physical review letters.

[19]  R. Glauber The Quantum Theory of Optical Coherence , 1963 .

[20]  Lee,et al.  Measure of the nonclassicality of nonclassical states. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[21]  J. Åberg Quantifying Superposition , 2006, quant-ph/0612146.

[22]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[23]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[24]  T. Rudolph,et al.  Reference frames, superselection rules, and quantum information , 2006, quant-ph/0610030.

[25]  M. Hillery,et al.  Nonclassical distance in quantum optics. , 1987, Physical review. A, General physics.

[26]  M. Plenio,et al.  Converting Nonclassicality into Entanglement. , 2015, Physical review letters.

[27]  Pavel Sekatski,et al.  Detecting Large Quantum Fisher Information with Finite Measurement Precision. , 2015, Physical review letters.

[28]  Thora Tenbrink,et al.  Reference Frames , 2017, Encyclopedia of GIS.

[29]  Adam Miranowicz,et al.  Nonclassicality Invariant of General Two-Mode Gaussian States , 2016, Scientific Reports.

[30]  G. Tóth,et al.  Quantum metrology from a quantum information science perspective , 2014, 1405.4878.

[31]  Matteo G. A. Paris,et al.  Displacement operator by beam splitter , 1996 .

[32]  Wolfgang Dür,et al.  Measures of macroscopicity for quantum spin systems , 2012 .

[33]  Kok Chuan Tan,et al.  Quantifying the Coherence between Coherent States. , 2017, Physical review letters.

[34]  Radim Filip Distillation of quantum squeezing , 2013 .

[35]  Diosi Comment on "Nonclassical states: An observable criterion" , 2000, Physical review letters.

[36]  T. Ralph,et al.  Universal quantum computation with continuous-variable cluster states. , 2006, Physical review letters.

[37]  W. Vogel,et al.  Quantifying nonclassicality by characteristic functions , 2017, 1702.00213.

[38]  S. Braunstein,et al.  Quantum computation over continuous variables , 1998 .

[39]  Krishna Kumar Sabapathy,et al.  Process output nonclassicality and nonclassicality depth of quantum-optical channels , 2015, 1506.06706.

[40]  Alfredo Luis,et al.  Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes. , 2010, Physical review letters.

[41]  Jonathan P. Dowling,et al.  Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements , 2002 .

[42]  Michael M. Wolf,et al.  An operational measure for squeezing , 2016, 1607.00873.

[43]  N. Gisin,et al.  Two-mode squeezed state as Schrodinger-cat-like state , 2014, 1410.8421.

[44]  J. Fiurášek,et al.  A high-fidelity noiseless amplifier for quantum light states , 2010, 1004.3399.

[45]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[46]  M. D. Gosson,et al.  Symplectic Geometry and Quantum Mechanics , 2006 .

[47]  Th. Richter,et al.  Nonclassicality criteria in terms of moments , 2005 .

[48]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[49]  Davide Girolami,et al.  Witnessing Multipartite Entanglement by Detecting Asymmetry , 2015, Entropy.

[50]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[51]  Philippe Grangier,et al.  Non-gaussian statistics from individual pulses of squeezed light , 2004 .

[52]  Ivette Fuentes,et al.  Quantum parameter estimation using multi-mode Gaussian states , 2015, 1502.07924.

[53]  Laura Mančinska,et al.  Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask) , 2012, 1210.4583.

[54]  M. Paternostro,et al.  Nonlinearity as a resource for nonclassicality in anharmonic systems , 2015, 1507.07840.

[55]  N. C. Menicucci,et al.  Quantum Computing with Continuous-Variable Clusters , 2009, 0903.3233.

[56]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[57]  Robert König,et al.  On quantum additive Gaussian noise channels , 2016, Quantum Inf. Comput..

[58]  M. Hillery,et al.  Total noise and nonclassical states. , 1989, Physical review. A, General physics.

[59]  C. Paige,et al.  History and generality of the CS decomposition , 1994 .

[60]  J. Fiurášek Gaussian transformations and distillation of entangled Gaussian states. , 2002, Physical review letters.

[61]  H. P. Robertson The Uncertainty Principle , 1929 .

[62]  Vlatko Vedral,et al.  General framework for quantum macroscopicity in terms of coherence , 2015, 1505.03792.

[63]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[64]  Hyunseok Jeong,et al.  Quantification of macroscopic quantum superpositions within phase space. , 2011, Physical review letters.

[65]  M. Horodecki,et al.  Fundamental limitations for quantum and nanoscale thermodynamics , 2011, Nature Communications.

[66]  J. Ignacio Cirac,et al.  Quantum entanglement theory in the presence of superselection rules (15 pages) , 2004 .

[67]  Pavel Sekatski,et al.  Macroscopic quantum states: Measures, fragility, and implementations , 2017, Reviews of Modern Physics.

[68]  Anthony J Leggett,et al.  Testing the limits of quantum mechanics: motivation, state of play, prospects , 2002 .

[69]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[70]  Eric Chitambar,et al.  Critical Examination of Incoherent Operations and a Physically Consistent Resource Theory of Quantum Coherence. , 2016, Physical review letters.

[71]  A. P. Lund,et al.  Conditional production of superpositions of coherent states with inefficient photon detection , 2004 .

[72]  W. Vogel,et al.  Nonclassicality of quantum states: a hierarchy of observable conditions. , 2002, Physical review letters.

[73]  Theda McGrew To , 1997, Neurology.

[74]  A Laing,et al.  Boson sampling from a Gaussian state. , 2014, Physical review letters.

[75]  D. Stoler Equivalence classes of minimum-uncertainty packets. ii , 1970 .

[76]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[77]  Barry C. Sanders,et al.  Continuous-variable quantum-state sharing via quantum disentanglement , 2004, quant-ph/0411191.

[78]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[79]  E. Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .

[80]  B. Baseia,et al.  On the measure of nonclassicality of field states , 2003 .

[81]  Tillmann Baumgratz,et al.  Multi-parameter quantum metrology , 2016, 1604.02615.

[82]  Marco G. Genoni,et al.  Quantifying non-Gaussianity for quantum information , 2010, 1008.4243.

[83]  M. Paris,et al.  Resource theory of quantum non-Gaussianity and Wigner negativity , 2018, Physical Review A.

[84]  Gerd Leuchs,et al.  30 years of squeezed light generation , 2015, 1511.03250.

[85]  V. Vedral,et al.  Quantum processes which do not use coherence , 2015, 1512.02085.

[86]  W. Vogel,et al.  Quantification of Nonclassicality , 2009, 0904.3390.

[87]  J. Calsamiglia,et al.  Computable measure of nonclassicality for light. , 2004, Physical review letters.

[88]  S. Braunstein Squeezing as an irreducible resource , 1999, quant-ph/9904002.

[89]  Florian Fröwis,et al.  Lower bounds on the size of general Schrödinger-cat states from experimental data , 2017 .

[90]  Gerardo Adesso,et al.  Gaussian quantum resource theories , 2018, Physical Review A.

[92]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[93]  L. Mandel Non-Classical States of the Electromagnetic Field , 1986 .

[94]  E. Stachow An Operational Approach to Quantum Probability , 1978 .

[95]  N. Gisin,et al.  Quantum Communication , 2007, quant-ph/0703255.

[96]  Shota Yokoyama,et al.  Ultra-large-scale continuous-variable cluster states multiplexed in the time domain , 2013, Nature Photonics.

[97]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[98]  Gerardo Adesso,et al.  Continuous Variable Quantum Information: Gaussian States and Beyond , 2014, Open Syst. Inf. Dyn..

[99]  P. L. Knight,et al.  Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement , 2002 .

[100]  Paulina Marian,et al.  Quantifying nonclassicality of one-mode Gaussian states of the radiation field. , 2002, Physical review letters.

[101]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[102]  K Horodecki,et al.  Quantifying contextuality. , 2012, Physical review letters.

[103]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[104]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[105]  Krishna Kumar Sabapathy Quantum-optical channels that output only classical states , 2015 .

[106]  Wang Xiang-bin Theorem for the beam-splitter entangler , 2002 .