Multiple Memory States in Resistive Switching Devices Through Controlled Size and Orientation of the Conductive Filament

Multilevel operation in resistive switching memory (RRAM) based on HfOx is demonstrated through variable sizes and orientations of the conductive filament. Memory states with the same resistance, but opposite orientation of defects, display a different response to an applied read voltage, therefore allowing an improvement of the information stored in each physical cell. The multilevel scheme allows a 50% increase (from 2 to 3 bits) of the stored information.

[1]  Yoshio Nishi,et al.  Electronic correlation effects in reduced rutile TiO 2 within the LDA+U method , 2010 .

[2]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[3]  R Rosezin,et al.  Crossbar Logic Using Bipolar and Complementary Resistive Switches , 2011, IEEE Electron Device Letters.

[4]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[5]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[6]  B. Eitan,et al.  NROM: A novel localized trapping, 2-bit nonvolatile memory cell , 2000, IEEE Electron Device Letters.

[7]  D. Gilmer,et al.  Metal oxide resistive memory switching mechanism based on conductive filament properties , 2011 .

[8]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .

[9]  M. Rozenberg,et al.  Nonvolatile memory with multilevel switching: a basic model. , 2004, Physical review letters.

[10]  A. Zunger,et al.  Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO , 2001 .

[11]  R. Williams,et al.  Sub-nanosecond switching of a tantalum oxide memristor , 2011, Nanotechnology.

[12]  Rainer Waser,et al.  Complementary resistive switches for passive nanocrossbar memories. , 2010, Nature materials.

[13]  J. Yang,et al.  A Family of Electronically Reconfigurable Nanodevices , 2009 .

[14]  B. Delley,et al.  Role of Oxygen Vacancies in Cr‐Doped SrTiO3 for Resistance‐Change Memory , 2007, 0707.0563.

[15]  S. Balatti,et al.  Resistive Switching by Voltage-Driven Ion Migration in Bipolar RRAM—Part II: Modeling , 2012, IEEE Transactions on Electron Devices.

[16]  S. Balatti,et al.  Evidence for Voltage-Driven Set/Reset Processes in Bipolar Switching RRAM , 2012, IEEE Transactions on Electron Devices.

[17]  Jea-Gun Park,et al.  Oxygen Ion Drift‐Induced Complementary Resistive Switching in Homo TiOx/TiOy/TiOx and Hetero TiOx/TiON/TiOx Triple Multilayer Frameworks , 2012 .

[18]  U. Böttger,et al.  Beyond von Neumann—logic operations in passive crossbar arrays alongside memory operations , 2012, Nanotechnology.

[19]  P. McIntyre,et al.  Thermal Properties of Ultrathin Hafnium Oxide Gate Dielectric Films , 2009, IEEE Electron Device Letters.

[20]  N. Milošević,et al.  Thermophysical Properties of Solid Phase Hafnium at High Temperatures , 2006 .

[21]  R. Dittmann,et al.  Origin of the Ultra‐nonlinear Switching Kinetics in Oxide‐Based Resistive Switches , 2011 .