Exploring equivalence domain in nonlinear inverse problems using Covariance Matrix Adaption Evolution Strategy (CMAES) and random sampling

[1]  J. Vrugt,et al.  Probabilistic electrical resistivity tomography of a CO2 sequestration analog , 2014 .

[2]  Anne Auger,et al.  Comparison-based natural gradient optimization in high dimension , 2014, GECCO.

[3]  B. Minsley A trans-dimensional Bayesian Markov chain Monte Carlo algorithm for model assessment using frequency-domain electromagnetic data , 2011 .

[4]  Mrinal K. Sen,et al.  Global Optimization Methods in Geophysical Inversion , 1995 .

[5]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[6]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[7]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[8]  A. Curtis,et al.  Prior information, sampling distributions, and the curse of dimensionality , 2001 .

[9]  Anne Auger,et al.  Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009 , 2010, GECCO '10.

[10]  Serge Gratton,et al.  Globally convergent evolution strategies for constrained optimization , 2015, Comput. Optim. Appl..

[11]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[12]  F. Tsai,et al.  Soil density, elasticity, and the soil-water characteristic curve inverted from field-based seismic P- and S-wave velocity in shallow nearly saturated layered soils , 2015 .

[13]  Stan E Dosso,et al.  Uncertainty estimation in simultaneous Bayesian tracking and environmental inversion. , 2008, The Journal of the Acoustical Society of America.

[14]  P. Weidelt The inverse problem of geomagnetic induction , 1973 .

[15]  Kerry Key,et al.  1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers , 2009 .

[16]  Anandaroop Ray,et al.  Bayesian inversion of marine CSEM data from the Scarborough gas field using a transdimensional 2-D parametrization , 2014 .

[17]  Oleg V. Pankratov,et al.  Applied Mathematics in EM Studies with Special Emphasis on an Uncertainty Quantification and 3-D Integral Equation Modelling , 2015, Surveys in Geophysics.

[18]  D. Higdon,et al.  Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling , 2009 .

[19]  Pascal Côté,et al.  Comparison of Stochastic Optimization Algorithms in Hydrological Model Calibration , 2014 .

[20]  Jasper A. Vrugt,et al.  High‐dimensional posterior exploration of hydrologic models using multiple‐try DREAM(ZS) and high‐performance computing , 2012 .

[21]  Stan E. Dosso,et al.  Non-linearity in Bayesian 1-D magnetotelluric inversion , 2011 .

[22]  T. Leeuwen,et al.  Resolution analysis by random probing , 2015 .

[23]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[24]  M. Sambridge,et al.  Trans-dimensional inverse problems, model comparison and the evidence , 2006 .

[25]  Alexander V. Grayver,et al.  3D inversion and resolution analysis of land-based CSEM data from the Ketzin CO2 storage formation , 2014 .

[26]  S. K. Park,et al.  Random number generators: good ones are hard to find , 1988, CACM.

[27]  D. Oldenburg,et al.  NON-LINEAR INVERSION USING GENERAL MEASURES OF DATA MISFIT AND MODEL STRUCTURE , 1998 .

[28]  Malcolm Sambridge,et al.  A Parallel Tempering algorithm for probabilistic sampling and multimodal optimization , 2014 .

[29]  Nils Olsen,et al.  A global model of mantle conductivity derived from 5 years of CHAMP, Ørsted, and SAC‐C magnetic data , 2006 .

[30]  J. A. Vrugt,et al.  Two-dimensional probabilistic inversion of plane-wave electromagnetic data: Methodology, model constraints and joint inversion with electrical resistivity data , 2014, 1701.02540.

[31]  P.M.J. Van den Hof,et al.  Improving the ensemble-optimization method through covariance-matrix adaptation , 2014 .

[32]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[33]  S. Constable,et al.  The advantages of logarithmically scaled data for electromagnetic inversion , 2015 .

[34]  Paul Scheunders,et al.  On the Geometry of Multivariate Generalized Gaussian Models , 2012, Journal of Mathematical Imaging and Vision.

[35]  Ming Ye,et al.  Parallel Inverse Modeling and Uncertainty Quantification for Computationally Demanding Groundwater-Flow Models Using Covariance Matrix Adaptation , 2015 .

[36]  Serge Gratton,et al.  Globally convergent evolution strategies , 2014, Mathematical Programming.

[37]  Klaus Mosegaard,et al.  Limits to Nonlinear Inversion , 2010, PARA.

[38]  A. Malinverno Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem , 2002 .

[39]  Rhys Hawkins,et al.  Geophysical imaging using trans-dimensional trees. , 2015 .

[40]  Michel Menvielle,et al.  Stochastic interpretation of magnetotelluric data, comparison of methods , 2007 .

[41]  Juan Luis Fernández-Martínez,et al.  Comparative analysis of the solution of linear continuous inverse problems using different basis expansions , 2015 .

[42]  Anne Auger,et al.  Impacts of invariance in search: When CMA-ES and PSO face ill-conditioned and non-separable problems , 2011, Appl. Soft Comput..

[43]  L. D. Whitley,et al.  Efficient retrieval of landscape Hessian: forced optimal covariance adaptive learning. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  S. Schmidt,et al.  Advances in 3D Potential Field Modeling , 2013 .

[45]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[46]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[47]  Nikolaos V. Sahinidis,et al.  Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..

[48]  C. Willmott,et al.  Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance , 2005 .

[49]  Klaus Mosegaard,et al.  MONTE CARLO METHODS IN GEOPHYSICAL INVERSE PROBLEMS , 2002 .

[50]  R. Parker,et al.  Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data , 1987 .

[51]  Eric Laloy,et al.  Mass conservative three‐dimensional water tracer distribution from Markov chain Monte Carlo inversion of time‐lapse ground‐penetrating radar data , 2012 .

[52]  D. Oldenburg,et al.  A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems , 2004 .

[53]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[54]  A. Jackson,et al.  Robust modelling of the Earth's magnetic field , 2000 .

[55]  M. Girolami,et al.  Solving large-scale PDE-constrained Bayesian inverse problems with Riemann manifold Hamiltonian Monte Carlo , 2014, 1407.1517.

[56]  Anne Auger,et al.  Experimental Comparisons of Derivative Free Optimization Algorithms , 2009, SEA.

[57]  James Martin,et al.  A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..

[58]  Christian L. Müller,et al.  Exploring the common concepts of adaptive MCMC and Covariance Matrix Adaptation schemes , 2010, Theory of Evolutionary Algorithms.

[59]  David L. Alumbaugh,et al.  Robust and accelerated Bayesian inversion of marine controlled-source electromagnetic data using parallel tempering , 2013 .

[60]  Alberto Leon-Garcia,et al.  Estimation of shape parameter for generalized Gaussian distributions in subband decompositions of video , 1995, IEEE Trans. Circuits Syst. Video Technol..

[61]  Andy Adler,et al.  A primal–dual interior-point framework for using the L1 or L2 norm on the data and regularization terms of inverse problems , 2012 .

[62]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .

[63]  Jean-Yves Tourneret,et al.  Parameter Estimation For Multivariate Generalized Gaussian Distributions , 2013, IEEE Transactions on Signal Processing.

[64]  Youssef Diouane Des stratégies évolutionnaires globalement convergentes avec une application en imagerie sismique pour la géophysique. (Globally convergent evolution strategies with application to Earth imaging problem in geophysics) , 2014 .

[65]  Raymond Ros,et al.  Benchmarking a weighted negative covariance matrix update on the BBOB-2010 noiseless testbed , 2010, GECCO '10.

[66]  Juan Luis Fernández-Martínez,et al.  From Bayes to Tarantola: New insights to understand uncertainty in inverse problems☆ , 2013 .

[67]  Alexey Kuvshinov,et al.  General formalism for the efficient calculation of the Hessian matrix of EM data misfit and Hessian-vector products based upon adjoint sources approach , 2015 .

[68]  Juan Luis Fernández-Martínez,et al.  The effect of noise and Tikhonov's regularization in inverse problems. Part I: The linear case , 2014 .